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Abstract

In this paper, we study the probabilistic stability analysis of a subclass of stochastic
hybrid systems, called the Planar Probabilistic Piecewise Constant Derivative Systems
(Planar PPCD), where the continuous dynamics is deterministic, constant rate and pla-
nar, the discrete switching between the modes is probabilistic and happens at boundary
of the invariant regions, and the continuous states are not reset during switching. These
aptly model piecewise linear behaviors of planar robots. Our main result is an exact
algorithm for deciding absolute and almost sure stability of Planar PPCD under some
mild assumptions on mutual reachability between the states and the presence of non-
zero probability self-loops. Our main idea is to reduce the stability problems on planar
PPCD into corresponding problems on Discrete Time Markov Chains with edge weights.
Our experimental results on planar robots with faulty angle actuator demonstrate the
practical feasibility of this approach.

1 Introduction

Stability of robotic trajectories is a desirable property, as it guarantees the correct tracking
of the path plan even in the presence of external disturbances. In this paper, we investigate
the stability of planar robots with constant rate dynamics where the sensor/actuator noise is
captured using probabilistic mode switchings. More precisely, we study Probabilistic Piece-
wise Constant Derivative Systems (PPCD), that consist of a finite number of discrete states
representing different modes of operation each associated with a constant rate dynamics,
and probabilistic mode switches enabled at certain polyhedral boundaries. These fall under
the umbrella of Stochastic Hybrid Systems (SHS) [31].

Safety analysis of SHS has been extensively studied in the context of both non-stochastic
as well as stochastic hybrid systems [29, 19} 9, [T], 20]; stability on the other hand is relatively
less explored, especially, from a computational point of view. It is well-known that even
for non-stochastic hybrid systems decidability (existence of exact algorithms) for safety
is achievable only under restrictions on the dynamics and the dimension [16]. More re-
cently, decidability of stability of hybrid systems has been explored in the non-stochastic
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setting [27]. The main contribution of this paper is the identification of a practically useful
subclass of stochastic hybrid systems for which stability is decidable along with an exact
stability analysis algorithm.

The classical stability analysis techniques build on the notion of Lyapunov functions that
provide a certificate of stability. While the notion of Lyapunov functions have been extended
to the hybrid system setting, computing them is a challenge. Typically, they require solving
certain complex optimization problems, for instance, to deduce coefficients of polynomial
templates, and more importantly, need the exploration of increasingly complex templates.
In this paper, we take an alternate route where we present graph theory based reductions
to show the decidability of stability analysis.

Our broad approach is to reduce a planar PPCD, that is a potentially infinite state
probabilistic system, to that of a Finite State Discrete Time Markov Chain such that the
stability of the planar PPCD can be deduced exactly by algorithmically checking certain
properties of the reduced system. We study two notions of stability, namely, absolute con-
vergence and almost sure convergence. In the former, we seek to ensure that every execution
converges, while in the latter, we require that the probability of the set of system executions
that converge be 1. Absolute convergence ignores the probabilities associated with the tran-
sitions, and hence, can be solved using previous results on stability analysis of Piecewise
Constant Derivative systems [26], where one checks for certain diverging transitions and
cycles. Checking almost sure convergence is much more challenging. We show that almost
sure convergence can be characterized by certain constraints based on the stationary dis-
tribution of the reduced system. For this result to hold, we need mild conditions on the
PPCD that ensure the existence of this stationary distribution. The proof relies on several
insights, including the properties of planar dynamics, and convergence results on infinite
sequences of random variables.

We have implemented the algorithm in a Python toolbox. Our experimental results on
multiple PPCDs modeling planar mobile robots demonstrate the feasibility of our approach.
We have omitted proofs of the results due to space constraints; details can be found in the
extended draft: https://github.com/spandan1994/public/raw/main/main_icra.pdf.

1.1 Related Work

Stability is a well studied problem in classical control theory, where Lyapunov function based
methods have been extensively developed. They have been extended to hybrid systems using
multiple and common Lyapunov functions [5, [10, 21} [33]. However, constructing Lyapunov
functions is computationally challenging, hence, alternate approximate methods have been
explored. For example, in one approach the state space is divided into certain regions
and shown that the system inevitably ends up in a certain region, thus ensuring stability
[13} 14], 23] 24]. Another approach is based on abstraction, where a simplified model (known
as the abstract model) is created based on the original model and stability analysis on the
simplified model is mapped back to the original one [2, [6 28 111 [I} O] 25] 26].

While stability has been extensively studied in non-probabilistic setting, investigations of
stability for probabilistic systems are limited. Sufficient conditions for stability of Stochastic
Hybrid Systems via Lyapunov functions is discussed in the survey [32]. Almost sure expo-
nential stability [7], 8, 12, [17] and asymptotic stability in distribution [35] [34] for Stochastic


https://github.com/spandan1994/public/raw/main/main_icra.pdf

Figure 1: Motion of planar robot with faulty heading angle actuator

Hybrid Systems have also been studied. Most of these works on probabilistic stability anal-
ysis provide approximate mehtods for analysis. We provide a simple class of Stochastic
Hybrid Systems that have practical application in modeling planar robots, and an exact
decidable algorithm for probabilistic stability analysis.

2 Case Study: Planar robot with a faulty actuator

Consider a robot navigating in a 2D plane at some constant speed v as shown in Figure
The plane is divided into four regions Ry, Ra, R3, R4 corresponding to the four quadrants,
and the robot has a unique direction #; (mode of operation) in which it moves while in
the region R;, and changes its mode of operation at the boundary of the regions. Due to
faulty actuator, the robot heading angle may deviate from 6; by an amount ¢;. We model
this as probabilistically choosing one of the k; uniformly distanced angles 01»1, e ,Gfi in the
interval [0; — €;,0; + ¢;] with probabilities p},--- | pfi, respectively. The whole system can
be modelled as a planar PPCD with Z?:I k; modes, where for every ¢ and 1 < j < k,
the mode qg corresponds to the robot traversing with heading angle Qg with speed v in the
region R;. The mode switching is possible between R; and R; if they are neighbors, that
is, they share a common boundary. For instance, we can switch between quadrants 1 and
2 or 4 and 1 but not 1 and 3. We can move to any mode corresponding to a neighbor ¢/
with probability pz .

The objective of the navigation is to reach a target point r on the 2D plane arbitrarily
closely. More precisely, we want to check whether the robot reaches within a § > 0 ball
around r for any arbitrarily small 5. We want to check if all executions of the robot have
this property (absolute convergence) as well as if the probability of convergence is 1 (almost
sure convergence).

3 Preliminaries

In this section, we will discuss important concepts related to Discrete Time Markov Chain
(DTMC), Weighted Discrete Time Markov Chain (WDTMC) and convergence of WDTMC.



3.1 Discrete Time Markov Chain

Let Dist(S) denote the set of all probability distributions on the set S. Let us define
Discrete Time Markov Chain (DTMC) on the set of states S.

Definition 3.1 (Discrete Time Markov Chain). The Discrete Time Markov Chain (DTMC)
is defined as the tuple M = (S, P) where

e S is a set of states.

e P: S — Dist(S) is a function from the set of states S to the set of all probability
distributions over S, Dist(S).

We use P(s1,s2) to denote P(s1)(s2) and P™(s1,s2) to denote the probability of going
from s1 to so in nm-steps.

A path of a DTMC M is a sequence of states o = s1, s2,... such that for all i < |o],
P(si, six+1) > 0, where |o| is the length of the sequence. A path of length 2 is called an edge
and the set of all edges is denoted as £. The i** state of the path o is denoted by o; and
the last state of o is denoted as o¢,q. o[i : j| denotes the subsequencm. We
say so is reachable from s; (denoted s; ~» s9) if there is a path o on Suc al 01 = 51
and oenqg = s2. The set of all finite paths of a DTMC M is denoted as Paths ¢, (M) and
the set of all infinite paths is denoted as Paths(M).

The probability of a path o, denoted P(0), is the product of the probabilities of each of
its edges, P(o) = HKM P(0;,0i+1). The probability of o with respect to a distribution p,
denoted P,(o) is the product of P(c) and the probability of oy under p, P,(0) = p(o1)-P(0).
We can associate a probability measure Pr to the set of infinite execution paths Paths(M)
of a DTMC M using probability of the cylinder sets of the finite paths as discussed in [4].

Next we define some subclasses of DTMC and show that it has some nice convergence
properties.

Definition 3.2 (Irreducibility). A DTMC M is called irreducible if for any s1,s2 € S,
S$1 ~ 89 and So ~» S1.

Definition 3.3 (Periodicity). A state s € S in a DTMC M is called periodic if for any
path o starting and ending at s, |o| is a multiple of some natural number greater than 1. A
DTMC M is called aperiodic if none of its states is periodic.

We say a probability distribution is stationary for a DTMC M if the next step distri-
bution remains unchanged.

Definition 3.4 (Stationary Distribution). A probability distribution p* € Dist(S) is called
the stationary distribution of DTMC M if,

p*(s) = > p*(S)P(s',s), VseS.
s'eS

For finite, irreducible DTMC, the stationary distribution is unique. The following the-
orem (see [30]) guarantees existence of limiting distribution for finite, irreducible and ape-
riodic DTMC and associates it with the stationary distribution of the DTMC.
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Theorem 3.5. For a finite, irreducible and aperiodic DTMC lim,,_,o, P"(s1,s2) exists for
all s1,s2 € S and lim,,_, P"(s1,s2) = p*(s2) where p* € Dist(S) is the unique stationary
distribution of M.

Note that P™(s1,s2) does not depend on s; as n — 0.

3.2 Weighted Discrete Time Markov Chain

Let us now define Weighted Discrete Time Markov Chain (WDTMC) that extend DTMC
with weighted edges.

Definition 3.6 (Weighted DTMC). The weighted DTMC (WDTMC) Myw = (S, P,W) is
a tuple such that (S, P) is a DTMC and W : € — R is a weight function where & is the set
of all possible edges of Myy.

With the weight function W defined, it is possible to associate weights to individual
paths of Myy.

Definition 3.7 (Weight of a path). The weight of a path o of WDTMC My, denoted
W (o), is defined as,
W(O’) = Z W(Ji,UH_l)

i<|o]

A simple path is a path without state repetition and a simple cycle is a path where
only the starting and the ending states are same. We use the notation SP for the set of all
simple paths and the notation SC for the set of all simple cycles of a WDTMC My .

3.3 Convergence of Weighted Discrete Time Markov Chain

Let us define the notions of absolute and probabilistic convergence of WDTMC. A WDTMC
is said to be absolutely convergent if the weight of every infinite path is upper bounded by
a constant.

Definition 3.8 (Absolute Convergence of WDTMC). A WDTMC Myy is said to be abso-
lutely convergent if IK > 0 such that for all infinite path o € Paths(Myw ), W(o) < K.

Further, a WDTMC is said to be almost surely convergent if the weight of an infinite
path is upper bounded by a constant with probability 1.

Definition 3.9 (Almost Sure Convergence of WDTMC). We say that a WDTMC My
is almost surely convergent if 3K > 0 such that for any path o of My, W(o) < K with
probability 1. In other words, Pr{o € Paths(Mw) | W (o) < K} = 1.

3.4 Polyhedral Sets

We denote the set of all polyhedral subsets of R by Poly(n). The facets of a polyhedral
subset A are the largest polyhedral subsets of the boundary of A. We denote the boundary
of a polyhedral subset A by d(A) and the set of all facets of A by F(A). We say a polyhedral

subset P is positive scaling invariant if for all x € P and o > 0, ax € P.



4 Analyzing Convergence of Weighted Discrete Time Markov
Chains

In this section, we discuss necessary and sufficient conditions for absolute and almost sure
convergence of WDTMC. For our analysis, we will assume all paths of the WDTMC start
from a single state called the initialization point (denoted s;pn;) of the WDTMC. In other
words we restrict our attention to the set of paths ¥’ := {o € Paths(Mw) | 01 = Sinit}-
Consequently we consider only those edges £’ = ¥/ N £, which are reachable from s;,;;. We
abuse notation and use X for ¥’ and £ for £ for the rest of the article.

4.1 Analyzing absolute convergence of Weighted DTMC

Here we provide a necessary and sufficient condition for analyzing absolute convergence
of a WDTMC. We begin with the following theorem which states that for any finite path
o € Paths i (M), we can get one simple path and a set of simple cycles such that their
total weight equals the weight of o.

Theorem 4.1. For any finite path o of My there exist a simple path o5 € SP and a set
of simple cycles SCy < SC such that W (o) = W(os) + Xecse, W(C).

Proof. We traverse o and whenever a cycle C is encountered, remove its edges from ¢ and
add the cycle to the set SC,. SC, contains only simple
cycles and the remaining edges of o form a simple path o5 = 0 — (U{C | C € SC,}).
Let denote the set of edges of o4 and for each C € SC,, denote the set of edges

of C..Clearly, is a partition of the‘set of edges of 0. Thus
W(o) = W(oy) CesC. . Hence, our claim is proved. O

We use Theorem [4.1] to prove the following main theorem which states that a WDTMC
is absolutely convergent iff there is no edge of infinite weight and no cycle of weight greater
that 1 reachable from the initial point.

Theorem 4.2 (Equivalent condition for absolute convergence). The WDTMC My is ab-
solutely convergent iff,

1. There does not exist a edge (s1,S2) reachable from siniy such that W(sy, sg) = o0.
2. For any simple cycle C reachable from sinir, W(C) < 0.

Proof. (=)

ndition 11 n
there is an edge (s1, s2) with W (sy, s2) = o0 such that for some finite path o starting from
Sinits Olg|—1 = S1 and 0|, = s2. But that implies W (o) = Ziﬂ;l W(oi,0i41) = 0 £ K
for any K > 0. So for any infinite path ¢’ with prefix o, W(¢’) = o0. Thus My is not
absolutely convergent. On the other hand if we suppose condition 2 is false then there is
a simple cycle C € SC with W(C) > 1 such that for some finite path o starting from s,
there exists an index j such that C = o[j : |o|]. Now we can easily construct the following
infinite path 0o, = o -C - C... by concatenating C infinite times to o. Clearly, o, starts
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at Sinit since o starts at sipe and W(ow) = W(o) + 3,y W(C) = 0 £ K for any K > 0.
Again, My is not absolutely convergent.
(<) Conversely, suppose both conditions 1 and 2 hold. Now we know for any finite path
o of My there exist a simple path o4 and a set of simple cycles SC, such that W (o) =
W(os)+2cese, W(C) (Theorem. Let o start from $;,;;. Then o and the set of simple
cycles SC, that are reachable from sinit. Now W (o) is at most ) guuemyes max{W (s, s2) |
} < 0. By condition 2 each simple cycle in SC, has weight less than 1. Thus
M(as) + Z_ W(C) < K where K is any positive real number greater than
2i(s1,59)ee Max{W(s1, s2) | (s1,52) € £}. Now consider any infinite path = of My starting
from sjp;. For each i € N, the prefix 7[1 : i] of 7 is a finite path of My, and by above
observation W(r[1 : i]) < K. Thus W(r) = lim;_,o W(m[1l : 7]) < K, i.e., My is absolutely
convergent. O

4.2 Analyzing almost sure convergence of Weighted DTMC

In this subsection, we will provide a necessary and sufficient condition for almost sure
convergence of a WDTMC. We assume a WDTMC My is finite, irreducible and aperiodic
and thus has the limiting distribution equal to its stationary distribution p* (Theorem [3.5]).
The main theorem basically states that a WDTMC is almost surely convergent iff the value
obtained by multiplying the weight of each edge with its probability with respect to p* and

then summing it over all edges, EliicuRdedIFTIONIGTNaABGVE .

Theorem 4.3. Let My, be a WDTMC. My is almost surely convergent iff 3 ¢ Pox(e)W (e)
0, where & is the set of all edges on Myy.

We say D, .o Pyx(e)W(e) is the effective weight of the WDTMC My, and denote it as
We. We define partial average weight upto n for an infinite path o as

(Sa)n — Z?:l W(Uiaai+1)

n n

Next we state the main lemma of this subsection which essentially says the average weight
of an infinite path is Wg almost surely.

Lemma 4.4. % - YN P, (e;)W(e;) as n — oo almost surely, where Py« (e;) is the
probability of the single edge e; with respect to the stationary distribution p*.

Observe that W (o) = limy,—eo 1 ((S5)n/n). Thus using Lemma 4.4 we can easily prove
Theorem (detailed proof in Appendix [7.3)).

To prove Lemma [£.4] we enumerate edges of My as e1,...,ey and define random
variables {X | i € [N];j € N} so that X} completely captures the information of which
edge is appearing on which step of an infinite path o.

XI _ 1if (O‘j,O‘j+1) = €5
J 0 else.

N
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Observe that,

(So)n _ Zf\il(# times e; appears on o[l : n + 1]) - W(e;)

n n
and Z?:l XJZ: _ (# times e; appears in o[l : n + 1])
n B n '
N n AN )
Thus, Be)n _ =1 <Ej=1Xj> Wie:)
o n

X

Our approach is to show that NS N P,«(e;) as n — oo almost surely, which we
do by using a variant of strong law of large numbers obtained as the corollary of a result
discussed in [22].

Theorem 4.5. Let {Y;}ien be non-iid Ly random variables such that for all i E[Y;] = 0,
E[Y?] <1 for some M > 0 and for any i,j € N, there exist constants C > 0 and X € (0,1)

such that |Cov(Y;, ;)| < NIl then LiaYi 1Yl — 0 as n — o0 almost surely.

However to use Theorem we need to show that |C’ov(X;:, X}!)| decays exponentially
which is one of our important contributions.

Lemma 4.6. There exist constants C > 0 and X € (0, 1) such that |C’ov(X]Z:, X})| < CAV—H,

Proof. The proof of Lemma [£.6] depends on results on the rate of convergence of the
WDTMC to its stationary distribution as number of steps n — o. We mention these
results with proof in Appendix [7.2]

Observe that, we can assume without loss of generality j > k, since Cov is a symmetric
function (i.e., C’ov(X},X,’i) = C’ov(X,i,X;:)). Hence it is enough to prove |Cov(X]Z:,X,i)| <
CAU=k) Observe that the product random variable X]’:X,i is Bernoulii with

xixi Lif Xj =1 and X}, =1
ik 0 else.

We know if a random variable X is Bernoulii then E[X] = Pr(X = 1). Using this fact we
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get,
|Cov(Xj, X})|
=|E[XjX}] — E[XGE[X;]]
=|Pr(XiX; =1)— Pr(XZi = 1)Pr(X} =1)]
=Pr(Xj, =1)|Pr(X} =1| X} =1) - Pr(X} = )y
Pr(XjX;=1)
Pr(X; = 1)
=|Pr(Xj = 1| X}, =1) = Py (e;)
— Pr(X) =1) + Py(e;)| (since Pr(Xj =1)
(
(

(smce Pr(X =1|Xi=1)=

N

1)
<|Pr(X)=1|X} =1)— Py (e;)]
+|Pr(X} =1) — Py (es)]
<C'AU=R) L &'\ for some €' > 0, A e (0,1)
(using Lemma [7.2] and Corollary
<20'A\U7R) (since AR > M)

<CAU™) (where C = 2C")

using triangle inequality)

Thus our claim is proved. ]

sing Theoremm We prove tha
partial’ average of X7 upto n converges to partial average of E [XJ’] upto n (average is taken
over j) almost surely.

i1 X T BX)
n

Lemma 4.7. As n — 0, -

almost surely.

Proof. To satisfy conditions of Theorem we define random variables {)EJ’ | 7 € N}
(for a fixed i), where X! = E[X!]. Clearly then E[X!] = 0 and E[(X})?] =
‘ ) i . ci v i i
E[(X]’ - E[X;]) ] = Var(X’) (since X} is Bernoulii). Now Cov(X}, X}) = E[X:X}] =
E[X]’X}c] - E[X]’]E[ i1= Cov(X]Z., X!). We have already shown in Lemma that there

exist C' > 0 and A € (0,1) such that |C’ov(X;:, X})| < CAP=F Hence we can use Theorem
to conclude that,

i
X]
<1

noxi
lim @ — 0 almost surely
n—aoo n
no X " E[X
= lim <ZJ_1 ] Z]_l [ ]]> = () almost surely
n—a n n

. Z] 1 XZ . Z] 1 E[XZ]
= lim | —/———— | = lim [ —=—————
n—o0 n n—0o0 n

almost surely.
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Hence our claim is proved. ]

Finally, we prove partial average of F [X;] upto n (average is taken over j) converges to
P,«(0) as n — o0, which gives us our desired result.

o1 BIXG]

Lemma 4.8. = — Pyx(e;) asn — 0.

n

Proof. Since E[X]’] = PT’(X;: = 1), from Corollary (7.3 we have,

Yo EIX]

n - p*(ei)

| 2L (BIXS] = By ()]

1 ¢ :
=— Z |E[X}] — Py« (ei)| (using triangle inequality)
n

for some C' > 0 and A € (0,1). Now,

n

1 .
T j
i, % 24O
j=1
CA
<lim 22 =0
o (1 — )
Hence lim,,_, o %[X;] — Pyx(e;)| < 0. But %[X;] — Pyx(e;)| = 0 for all n € N. Thus
lim,, o0 w must be equal to P,«(e;) and our claim is proved. O

4.3 Computability

Based on Theorems and we present two algorithms here for checking absolute and
almost sure convergence of a WDTMC. Assuming the WDTMC is finite, Algorithm [I] first
checks for existence of an infinite weight edge by Breadth First Search (BFS) [18] and then
for a strictly positive weight cycle using a variant of the Bellman-Ford algorithm [I8]. If
neither of them is found then the WDTMC is deemed absolutely convergent by Theorem
Since BFS takes time linear to the size of its input and Bellman-Ford takes time
quadratic to the size of its input, the time complexity of Algorithm [1]is O(|S|?), where S
is the set of states of Myy.

Assuming the WDTMC is finite, irreducible and aperiodic, Algorithm [2] first checks for
existence of an infinite weight edge by Breadth First Search (BFS). If such an edge exists
then the WDTMC is deemed not almost surely convergent (by Theorem . Otherwise
the stationary distribution p* of the WDTMC is calculated solving a set of linear equations
mentioned in Definition The value Y o P+ (€)W (e) is then calculated (where & is the

ecf
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Data: A WDTMC My, = (S, P, W)

Result: Yes/No

Convert My to a weighted graph G = (V, E,W') where V = S,
E ={(s1,82) €S x S| P(s1,s2) >0}, and W' : E — R defined as
W'(e) == —W(e);

Run BFS on G to check existence of edge with weight —oo;

if (edge with —oo weight erists) then
| Return No;

end

Run Bellman-Ford algorithm on G for checking existence of a negative weight cycle;

if (cycle with negative weight is found) then
| Return No;

else
| Return Yes;

end
Algorithm 1: Checking absolute convergence of WDTMC

Data: A WDTMC My := (S, P,W)
Result: Yes/No
Convert My to a weighted graph G = (V, E,W') where V = S,
E ={(s1,82) € S x S| P(s1,s2) > 0}, and W' : E — R defined as W'(e) := W(e);
Run BFS on G to check existence of edge with weight oo;

if (edge with oo weight exists) then
| Return No;

end
Calculate stationary distribution p* of My by solving the set of linear equations,

p*(s) = Z p*(sP(s',s), VselS
s'eS

3 pt(s) = 1

seS

asWeight < 0;
for e F do

| asWeight = asWeight + Py« (e)W'(e);
end

if asWeight < 0 then
| Return Yes;

else
| Return No;

end
Algorithm 2: Checking almost sure convergence of WDTMC
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set of transitions of the WDTMC) and compared to 0. The WDTMC is deemed almost
surely convergent only if > .o P« (e)W(e) < 0. Since BFS takes time linear to its input size
and solving a set of linear equations takes time at most cubic to the number of variables,
the time complexity of Algorithm [2is O(|S]3), where S is the set of states of Myy.

5 Probabilistic Piecewise Constant Derivative Systems

In this section, we present the details of the Probabilistic Piecewise Constant Derivative
Systems (PPCD) and provide a characterization of absolute and almost sure convergence
by a reduction to that of DTMCs.

5.1 Formal Definition of PPCD

We model PPCDs as consisting of a discrete set of modes, each associated with an invariant
and probabilistice transitions between modes that are enabled at the boundaries of the
invariants.

Definition 5.1 (PPCD). The Probabilistic Piecewise Constant Derivative System (PPCD)
is defined as the tuple H := (Q, X, Inv, Flow, Edges) where

o () is the set of discrete locations,
o X = R" is the continuous state space for some n € N,

e Inv : Q — Poly(n) is the invariant function which assigns a positively invariant
polyhedral subset of the statespace to each location q € Q,

o Flow : Q — X is the Flow function which assigns a flow vector, say Flow(q) € X, to
each location q € @,

e Edges € Q x (Uge@F(Inv(q))) x Dist(Q) is the probabilistic edge relation such that
(q, f, p) € Edges where for every (q, f), there is a at most one p such that (q, f,p) €
Edges and f € F(Inv(q)). f is called a Guard of the location q.

Next, we discuss the semantics of the PPCD. An execution starts from a location gg € Q
and some continuous state xg € X and evolves continuously for some time T" according to the
dynamics of go until it reaches a facet fy of the invariant of gg. Then a probabilistic discrete
transition is taken if there is an edge (qo, fo, po) and the state qg is probabilistically changed
to g1 with probability po(q1). The execution (tree) continues with alternating continuous
and discrete transitions.

Formally, for any two continuous states x1,x2 € X and ¢ € ), we say that there is a
continuous transition from x; to xo with respect to q if z1, 22 € Inv(q), there exists T' > 0
such that zo = z1 + Flow(q) - T, 1 + Flow(q) -t ¢ d(Inv(qo)) for any 0 < ¢ < T and
x2 € 0(Inv(qo)). We note that there is a unique continuous transition from any state (g, x)
since it requires the state to evolve until it reaches the boundary for the first time, which
corresponds to a unique time evolution 7". Further, if for all ¢ > 0, z1 + Flow(q) -t € Inv(q)
then we say x1 has an infinite edge with respect to ¢q. For two locations ¢, g2 € @), we say
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there is a discrete transition from ¢; to g2 with probability p via p € Dist(Q) and f € F(q1)
if f < Inv(ge), (1, f,p) € Edges and p = p(ga).

We capture the semantics of a PPCD using a WDTMC, wherein we combine a continuous
transition and a discrete transition to represent a probabilistic transition of the DTMC. In
addition, to reason about convergence, we also need to capture the relative distance of the
states from the equilibrium point, which is captured using edge weights. Let us fix 0 as
the equilibrium point for the rest of the section. The weight on a transition from (g1, 1)
to (g2, x2) captures the logarithm of the relative distance of z1 and zo from 0, that is, it is
(|z2]|oo/l|Z1]|o0), Where ||z||n captures the distance of state z from 0.

Definition 5.2 (Semantics of PPCD). Given a PPCD H, we can construct the WDTMC
My = (Sy, Py, Wy) where,

° SH = Q x X
o Py and Wy are defined as follows for any (q1,z1) and (q2,x2):

— If there is a continuous transition from x1 to xo with respect to q1 and there is
a discrete transition from q to qa with probability p via some p € Dist(Q) and
feF(q), and x5 € f, then Pu((q1,71), (g2, %2)) = p and Wy ((q1,71), (g2, 72)) =
log ([|w2]loo/|[#1]]o0)

— If 1 has an infinite edge with respect to q1, then Py((q1,x1),(q2,22)) = 1 if
(q1,71) = (g2, 22) and 0, otherwise, and Wy ((¢q1, 1), (q1,21)) = 0.

— Otherwise, Py ((q1,21), (q2,22)) = Wy ((q1, 1), (g2, 22)) = 0.

We use the semantics to define the stability of PPCD. More precisely, the absolute and
almost sure stability of a PPCD H is defined as the absolute and almost sure convergence
of its semantics M. Note that the convergence of the My implies that executions of
PPCD that start close to 0 remain close to 0 which is the standard definition of stability.
Consider an infinite path o of My. For all n € N, W(o[1 : n]) = log (d(oy,0)/d(00,0)),
where d((q,z),0) = ||z||o. This implies that if My, is absolutely convergent then there
exists K > 0 such that for any path o, d(c,,0) < e’ - d(0g,0) for all n € N. Thus for all
€ > 0, there exists 0 < § < /e such that d(og,0) < ¢ implies d(cy,,0) < € for all n € N, as
in the definition of Lyapunov stability.

5.2 Characterization of Stability of 2D PPCD

In this subsection, we focus on 2D PPCD and provide characterizations for stability. Our
broad approach is to reduce the analysis of stability to the analysis of convergence of a
finite WDTMC. More precisely, we construct a quotient WDTMC H"*¢ for a 2-dimensional
PPCD # such that H*? has the exact behavior of the semantics My.

Our main observation for the reduction is that if there is a transition between two
points 1 and z2 on facets fi and fs using a flow rate r, the scaling log(||z2||w/||Z1]]w0) is
independent of 1 and x5 and only depends on f1, fo and r due to the fact that f; and fo
belong to the boundaries of a positively scaled polyhedral set.
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Lemma 5.3. Let e = ((q1, 1), (q2,22)), € = ((q1,2}), (g2, 24)) such that Py/(e), Py(e’) > 0,
fio fo € Uy F(Inv(q)), such that x1,77 € fi and x2,25 € fo. Then Py(e) = Py(e’) and
Wi (e) = Wy(e').

Proof. Tt is easy to observe that Py (e) = Py /(€’) since by definition both Py (e) and Py (e’)
depend only on ¢ and f3. Let us now prove that Wy(e) = Wy(e') as well. Since X = R?
and sg = (qo, 0), any face can be depicted by a formula of the form y = kz, where k € R. Let
1 = (21(1),21(2)) and 29 = (z2(1),z2(2)). By property of PPCD, z9 = x1 + Flow(q1) - T
for some T = 0. Thus,

(z2(1),22(2))

=(z1(1),21(2)) + (Flow(q1)(1), Flow(q:)(2))T (1)
Let f1 :y = kiz and fo : y = koz. So,
1'2(2) = ]4}2 . IL‘Q(l) 2
21(2) = k1 - z1(1)

~—~~ o~

)
3)
Using equations we can write x2(1) = ¢-z1(1) where ¢ depends on ki1, k2, Flow(q1)(1)
and Flow(q1)(2). Thus z2lle can also be written in terms of ki, ko, Flow(q1)(1) and

ENIES
Flow(q1)(2) since {22 is equal to either |z5(2)|/|z1(2)] or [#a(2)|/|z1(1)] or z2(1)|/|o1(2)]
or |z2(1)]/|z1(1)] and z; and x2 dependent terms on numerator and denomenator always
cancel off each other. O

Lemma [5.3] shows that to calculate weight of a transition, it is enough to consider the
facets and the locations it corresponds to. Next, we define a reduced system, the quotient
WDTMC H"? for H, which is a finite WDTMC with states Q x quQ F(q).

Definition 5.4 (Quotient of PPCD). Let H be a 2-dimensional PPCD and My be its
semantics. We define the WDTMC H™e? = (ST, pred Wred) as follows,

o 57 = Q x o Fla)

o PU(q1, f1),(q2, f2)) = Pu((q1,21), (q2,22)) for some x1 € fi and x3 € fo such that
Py((q1,71), (g2, 22)) > 0, and 0 otherwise.

i Wred((fhafl)y (g2, f2)) = Wy ((q1,21), (q2,22)) for some x1 € f1 and x2 € fo such that
Py ((q1,71), (g2, 2)) > 0, and O otherwise.

The above definition is well-defined, that is, the choice of x1 and zo do not matter due
to Lemma
We assume that we start at some state zg € f for some f € [ J €0 F(q). We also assume

He? is aperiodic and irreducible. Irreducibility can be achieved by ensuring that any facet
is reachable from any other facet, and aperiodicity can be achieved by adding a self-loop
with non-zero probability to each discrete state. This is a reasonable assumption since at
any point there is positive probability that the robot fails to move.

Next, we prove some important connections between the PPCD and the reduced system.
First, we claim that for every infinite path in My, there is a path in H"*¢ that has the
same weight.
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Theorem 5.5 (Conservation of weight). For every infinite path o of My, there is a path
7 in H"? such that W (o) = W ().

Proof. Let be an infinite path of My. By assumption, o; € f; where
fi € quQM for each i € N. Suppose for each i, o; = (g;,x;). Since for
each i, there is an edge between (g;, z;) and (g;+1,®;+1) in My, there should be an edge
between (g;, f;) and (giy1, fir1) in H"®?. Using Lemma we can conclude that for all 4,
W ((qi,x4), (gi+1, Tiv1)) = W((q, fi), (¢i+1, fi+1))- Thus we can construct the infinite path

m = ((q1, f1), (g2, f2), .. .) such that W(m) = W (o). O

In fact, the converse of Theorem [5.5]is true as well. The proof relies on the observation
in Lemma

Theorem 5.6 (Converse of Theorem |5.5). For every infinite path 7 of H"?, there is a path
o of My, such that W(m) = W (o).

Proof. We prove by induction that for any n € N if there is a path 7 of length n in "¢
then there is a path ¢ of length n in My, with same weight as .

Base case: Suppose ((q1, f1), (g2, f2)) is an edge of H™?. Then there exist 1 € f; and
x9 € fy such that 9 = x1+ Flow(q1)-t, for some t = 0, i.e., there is an edge between (g1, x1)
and (g2, x2) in My. Also by Lemma W((q1, 1), (q2,22)) = W((q1, f1), (g2, f2)). Hence
base case is proved.

Now suppose ((q1, f1), -+ (@ns fn)s (@ni1, far1)) is a path of H™¢ and by induction hy-
pothesis we have a path ((¢1, 1), ..., (¢, Zn)) in My such that W((q1, f1),...,(qn, fn)) =
W((q1,x1),--.,(qn,Tn)). Since there is an edge between (g, fn) and (¢n+1, fn+1), there
exist 2], € f, and 2}, | € fn41 such that

Ty = @, + Flow(q,) -t (4)

for some ¢t > 0. Since X = R?, f, and f,,1 are rays. By Equation {4l there is a straight
line of slope Flow(gy,) that intersects both of them. But then any straight line with slope
Flow(gy,) intersecting f, will also intersect f,+1, in fact, if we take the straight line with
slope Flow(q,) passing through z,, it will intersect fy,41.

m Thus there exist x,4+1 € frt1 such that ((¢n,Zn), (Gn+1, Tn+1)) is an
€dge o H- DY emma W((Qnaxn)7 (Qn+1a xn-&-l)) = W((Qna fn)a (Qn+1> fn+1))- Hence
our claim is proved for all n € N, i.e., it holds for infinite paths of H"°? as well. O

Thus, any result that is true for ¢ remains true for My and vice versa. Now, we

state our main result for verifying stability of PPCDs that comes directly from the above
observation,

Theorem 5.7 (Characterization for Stability). A PPCD H is absolutely stable with respect
to 0 iff the quotient WDTMC H"* is absolutely convergent. A PPCD H is almost surely
stable with respect to 0 iff the quotient WDTMC H™? is almost surely convergent.
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Observed Time (sec)

Locs AS ASS Teonv Tubs Tus
96 Yes Yes 24.135 | 0.066 | 0.091
96 No Yes | 24.626 | 0.071 | 0.089
96 No No 24.477 | 0.009 | 0.009

Figure 2: Table 1

W[ | —| 2

6 Experiments and Observations

In this section, we provide the details of the implementation and the observations from our
experiments. We represent the PPCD and the quotient WDTMC as annotated graphs and
use networkz [I5] module of Python to store and manipulate these entities. To calculate
the edge weights, we need to solve linear optimization problem (as discussed in [26]) and
that is done by pplpy, a Python module for Parma Polyhedra Library (PPL) [3]. We use
networkz [I5] functions to find the existence of infinite weighted edges and simple cycles
with weight greater than 0 to check for absolute stability of the PPCD. To compute almost
sure stability, we need to calculate the stationary distribution of the quotient WDTMC,
which requires solving a set of linear equations mentioned in Definition We use pplpy
[3] for solving the feasibility of linear equations. Our experiments have been performed on
macOS Big Sur with Quad-Core Intel Core i7 2.8GHzx 1 Processor and 16GB RAM.

We have analyzed three examples of PPCD with 96 locations each. To construct these
examples, we partitioned the XY plane into 8 regions, corresponding to splitting each of the
quadrants diagonally into two, and assigned 12 locations to each region. The guard for all
locations corresponding to a region is same, and is set to the facet of that region that makes
a larger angle with positive X-axis. The Flow for each location is of the form az + by = 0,
where a and b depend on the corresponding region and experiment. For example in the
first experiment, for regions 1 and 2, @ = 1 and b is randomly chosen between {1,...,5},
for regions 3 and 4, b = 1 and —a is randomly chosen between {1,...,5}, for regions 5 and
6, a = —1 and —b is randomly chosen between {1,...,5}, and finally, for regions 7 and 8,
b = —1 and a is randomly chosen between {1,...,5}. In the second experiment, same is
done except for the first location where we have chosen a = 50 and b = 1 so that the PPCD
will not be absolutely stable. For the third experiment also, we have only changed flow
for the first location with @ = 1 and b = —5, so that the PPCD becomes unstable. The
probabilities for change of locations are chosen randomly. Note that all linear equations
have integer coefficients and all probabilities are rational since PPL cannot handle linear
equations with real coefficients.

We present our observations in Table 1. Here N represents the experiment number,
Locs represents the number of locations in the PPCD, AS denotes absolute convergence,
ASS denotes almost sure convergence, Teon, is the processor time to construct quotient
WDTMC, T, is the processor time required to check absolute stability on the reduced
systems and T, is the processor time required to check almost sure stability. In all the
three cases, the experimental result agreed with the expected result. Note that computing
the quotient WDTMC is the most expensive part of the analysis, since it requires solving
linear optimization problems proportional to |Q|?, where @ is the set of locations of the
PPCD. Analyses of both absolute and almost sure stability are fast compared to the quotient
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construction time, however, checking almost sure stability takes relatively longer since it
requires the computation of the stationary distribution.

7 Conclusion

In this paper, we showed the decidability of absolute and almost sure convergence of Planar
Probabilistic Piecewise Constant Derivative Systems (PPCD), that are a practically useful
subclass of stochastic hybrid systems and can model motion of planar robots with faulty
actuators. We give a computable characterization of absolute and almost sure convergence
through a reduction to a finite state DTMC. In the future, we plan to extend these ideas to
analyze higher dimensions PPCD and SHS with more complex dynamics. In particular, the
idea of reduction can be applied to higher dimensional PPCD but we will need to extend
our analysis to a Markov Decision Process that will appear as the reduced system.
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7.2 Rate of Convergence of DTMC to the Stationary Distribution

The following theorem (see [30]) shows that for finite, irreducible and aperiodic DTMC,
P"(s1) — p* exponentially as n — o0.

Theorem 7.1. Given an irreducible, aperiodic DTMC M with stationary distribution p*,
there exist constants C > 0 and X\ € (0,1) such that ¥n > 0,

[P™(z,y) = p*(y)| < CA" Vz,ye S

Based on Theorem [7.1], we can show that on a finite, irreducible, aperiodic DTMC, the
conditional probability that the same edge is observed on j** step provided that it was
observed on k" step before, converges to the probability of that edge with respect to p*,
as the difference between j and k grows large.

Lemma 7.2. For any j,k € N with j > k, there exist C > 0 and X\ € (0,1) such that
|Pr(Xi=1|X.=1)— Py(e;)] <CN "

Proof. Let us observe that the event (X]Z = 1] X} = 1) denotes the event e; is observed
after j-steps given e; is also observed after k-steps. Thus,

. . . k
Pr(Xi=1| X} =1) = Pi(e; | $init -5 1)
= PUFD(e; | (€i)end),

by memoryless property of DTMC. Now we can write
PUED (e | (€1)ena)
= (P(j_k_l)((ei)enda (%)1)) ~(P((ei)1, (€i)end)) -

Similarly by expanding P,«(e;) we can write

Pye(ei) = p*((ei)1) - P((ei)1, (€i)end)-
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Now,
|Pr(X; = 1] X} = 1) — Byx(es)|
=[PUFD((e1)end, (e3)1) — p*((e)1)] - P((ei)1, (€i)ena)
<IPUFD (1) enas (e0)1) — p*((ei)1)]
(since P((ei)1, (€i)end) < 1)
<C'AU=F=1) for some €' > 0, € (0,1)
(by Theorem [7.1))
<CAU™F) (where C' = C'/))

Hence our claim is proved. ]

From Lemma it is easy to observe the following corollary which states that the
probability of observing an edge on the j** step also converges to the probability of that
edge with respect to p* as j — oo.

Corollary 7.3. For any j € N, there exist C > 0 and A € (0,1) such that

|Pr(X; =1) = Py (e;)| < CN.

7.3 Proof of Theorem [4.3]
We have shown in Lemma |4.4] that for an infinite path o,
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