psl.maude 56.7 KB
Newer Older
1
---(
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Maude-PSL, Version: [1.0] [May 15th 2015]
Copyright (c) 2015, University of Illinois
All rights reserved.
Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, 
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, 
this list of conditions and the following disclaimer in the documentation 
and/or other materials provided with the distribution.
* Neither the name of the University of Illinois nor the names of its contributors 
may be used to endorse or promote products derived from this software without 
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-----------------------------------------------------------------------------------------------------------
Copyright (c) 2015. To the extent that a federal employee is an author of 
a portion of the software or a derivative work thereof, no copyright is 
claimed by the United States Government, as represented by the Secretary 
of the Navy ("GOVERNMENT") under Title 17, U.S. Code. All Other Rights Reserved.
Permission to use, copy, and modify this software and its documentation is 
hereby granted, provided that both the copyright notice and this permission 
notice appear in all copies of the software, derivative works or modified 
versions, and any portions thereof, and that both notices appear in 
supporting documentation.
GOVERNMENT ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" CONDITION AND 
DISCLAIM ANY LIABILITY OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING 
FROM THE USE OF THIS SOFTWARE.
GOVERNMENT requests users of this software to return modifications, 
improvements or extensions that they make to: 
maudenpa@chacs.nrl.navy.mil]
-or-
Naval Research Laboratory, Code 5543
4555 Overlook Avenue, SW
Washington, DC 20375
---)
---(
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
This file contains the second stage of the translation from a Maude-PSL specification to a Maude-NPA specification. To use this code, load it into
Maude and call red T ., where T is an AC soup containing the following:
**********************
The Protocol, Intruder, and Attack sections as a term of the form:
    Specification
    {
        Protocol
        {
        ...
        }
        Intruder
        {
        ...
        }
        Attacks
        {
        ...
        }
    }
    Note the addition of the "Specification" section heading, and the brackets
    at the beginning and end of each section.
**********************
[<DEFS>] - set of user-provided definitions. <DEFS> = $noDefs if we have no 
              definitions 
**********************
[mt] - Starting Strand data for protocols.
**********************
[empty] - Starting Strand Set for the Intruder.
**********************(Optional)**********************
[mt] - Another strand data if we're rewriting a composition term (and ONLY
if we're rewriting a composition term). This should be included
at the top level (i.e. same level as the [comp] structure and 
the translate terms).

If there are any problems, then the term will be lifted up to the kind, and
somewhere in the soup will be a term prefixed by a triple dollar sign: $$$
---)

---Contains the syntax for each the following translation.
load PSL-Syntax.maude
---Following one to one and one to many modules should only be used for
---debugging.
---One to One
---load nsldb.maude
---One to many
---load nslkd.maude
---TODO: Rewrite the error message terms so that they are easier for Python to parse.
---(
    Because of weird pregularity problems when trying to make Knowledge-!=  
    [from NPA-Syntax] a subsort of Disequalities, I've had to use the operator
    $!= in the Maude code. So Python needs to convert != to $!=.
---)

fmod SECTION-SEMANTICS is
    protecting SECTION-SYNTAX .
    *************************Section*********************************
    op _ in _ : SectionName SubSection -> Bool .
    eq SN:SectionName in SN:SectionName {S:Stmts} SS:SubSection = true .
    eq SN:SectionName in SS:SubSection = false [owise] .

endfm

fmod DEFINITION-SEMANTICS is
    protecting DEFINITION-SYNTAX .
    eq D:Definition, D:Definition, DS:Definitions = 
        D:Definition, DS:Definitions .

    ---This exists because it's required by downTerm. Checks performed both by
    ---the Python and by Maude should catch any errors before ever
    ---invoking $applyDefs. So, if $errorDefs shows up, it's because of an
    ---error in my code, not the user's.
    op $errorDefs : -> MsgSet .
    op $applyDefs : MsgSet Definitions -> MsgSet .
    ---This variant of applyDefs exists at the meta level, and is where we 
    ---actually apply the definitions.
    ---The other variants all reduce to this case.
    op $applyDefs : TermList Definitions -> TermList .

    eq $applyDefs(MS:MsgSet, $noDefs) = MS:MsgSet .

    eq $applyDefs(MS:MsgSet, D:NeDefinitions) = 
        downTerm($applyDefs(upTerm(MS:MsgSet), D:NeDefinitions), $errorDefs) .

    eq $applyDefs((empty).TermList, D:Definitions) = empty .   

    ceq $applyDefs((T:Term, TL:TermList), (M1:Msg := M2:Msg, D:Definitions)) 
    = upTerm(M2:Msg), $applyDefs(TL:TermList, (M1:Msg := M2:Msg, D:Definitions))
    if downTerm(T:Term, $errorDefs) == M1:Msg .

    eq $applyDefs((V:Variable, TL:TermList), D:Definitions) 
    = V:Variable, $applyDefs(TL:TermList, D:Definitions) [owise] .

    eq $applyDefs((C:Constant, TL:TermList), D:Definitions) 
    = C:Constant, $applyDefs(TL:TermList, D:Definitions) [owise] .

    eq $applyDefs((F:Qid[TL:TermList], TL1:TermList), D:Definitions) = 
        F:Qid[$applyDefs(TL:TermList, D:Definitions)], 
        $applyDefs(TL1:TermList, D:Definitions) [owise] .

    op $applyDefs : Strand Definitions -> Strand .
    var L : SMsgList-L .
    var R : SMsgList-R .
    op $errorStrand : -> Strand .
    eq $applyDefs(S:Strand, D:Definitions) = 
        downTerm($applyDefs(upTerm(S:Strand), D:Definitions), $errorStrand) .

    eq numIterations = 100 .

    eq $makeIdem($noDefs) = $noDefs .
    eq $makeIdem((P:Msg := M:Msg, DS:Definitions)) = 
        $makeIdem(P:Msg := M:Msg, P:Msg := downTerm($applyDefs(upTerm(M:Msg), DS:Definitions), $errorDefs), DS:Definitions, 
            P:Msg := M:Msg, 0) .
    eq $makeIdem(D:Definition, D:Definition, DS:Definitions, DORIG:Definition, N:Nat) = D:Definition, $makeIdem(DS:Definitions) .
    eq $makeIdem(D:Definition, D':Definition, DS:Definitions, DORIG:Definition, numIterations) = 
        $cantMakeDefsIdempotent((DORIG:Definition, DS:Definitions), numIterations) .
    eq $makeIdem(P:Msg := M:Msg, P:Msg := M':Msg, DS:Definitions, DORIG:Definition, N:Nat) = 
        $makeIdem(P:Msg := M':Msg, P:Msg := downTerm($applyDefs(upTerm(M':Msg), DS:Definitions), $errorDefs), DS:Definitions, 
            DORIG:Definition, s(N:Nat)) [owise] .

    eq $checkWellFormed(((K:Msg, N:Nat) := T:Msg), DS:Definitions) = K:Msg := T:Msg, $checkWellFormed(DS:Definitions) .
    eq $checkWellFormed($noDefs) = $noDefs .
    ceq $checkWellFormed((DS:Definitions, DSK:[Definitions])) = $checkWellFormed(DSK:[Definitions])
        if DS:Definitions =/= $noDefs .
    eq $checkWellFormed(DSK:[Definitions]) = $$$malformedDefs($moveLineNum(DSK:[Definitions])) [owise] .

    eq $moveLineNum(((K:[Msg], N:Nat) := T:[Msg], DS:[Definitions])) = (K:[Msg] := T:[Msg] $$,$$ N:Nat) $$;;;$$
        $moveLineNum(DS:[Definitions]) . 
    eq $moveLineNum($noDefs) = $noDefs .

endfm

mod PROTOCOL-SEMANTICS is
    protecting SECTION-SEMANTICS .
    protecting DEFINITION-SEMANTICS .
    protecting PROTOCOL-SYNTAX .

    vars N LN N1 : Nat . 
    var P : Role .
    vars IN OUT : MsgSet .

    ---mb Protocol {PS:ProtStmts} : ProtocolSection .

    var DEFS : Definitions .

    ---(
    The following two rules process the input and output for each role.
    The rules are identical, except for the order in which the Input and
    Output statements appear.
    Note that these two rules create the strand for each role. Therefore,
    these rules must fire before any of the rules that populate the strands.
    ---)
    crl Specification
        {
        Protocol{
            PS1:Stmts
            In(P) = IN .[N]
            PS2:Stmts
            Out(P) = OUT .[N1] 
            PS3:Stmts
        }
        SS:SubSection
        }
        [STR:StrandData]
        [DEFS]
        =>
        Specification
        {
            Protocol
            {
                PS1:Stmts PS2:Stmts PS3:Stmts
            }
            SS:SubSection
        }
        [P |-> {IN} :: nil :: [(nil).SMsgList-L | nil] 
            {$applyDefs(OUT, DEFS)} & STR:StrandData] 
        [DEFS]
        if IN are variables .

    crl Specification
        {
        Protocol{
            PS1:Stmts
            Out(P) = OUT .[N]
            PS2:Stmts
            In(P) = IN .[N1] 
            PS3:Stmts
        }
        SS:SubSection
        }
        [STR:StrandData]
        [DEFS]
        =>
        Specification
        {
            Protocol
            {
                PS1:Stmts PS2:Stmts PS3:Stmts
            }
            SS:SubSection
        }
        [P |-> {IN} :: nil :: [(nil).SMsgList-L | nil] 
            {$applyDefs(OUT, DEFS)} & STR:StrandData] 
        [DEFS]
        if IN are variables .


    ---(
        The next few rules handle ways in which the input and output can
        fail: the input contains something other than variables, or the 
        input and output statements are missing.
        Note that these checks will be pushed to Python, except possibly
        for the check that the input is variables. That depends on what
        I manage to accomplish with the parser. I'll probably keep the variable
        checking in Maude, because that requires distinguishing between
        user-defined terms, and high level syntax, which Maude is better at
        than Python.

        However, checking if the input and output statements exist should
        be easily done in Python, regardless of the power of the parser.
    ---)
    crl Specification
        {
        Protocol{
            PS1:Stmts
            In(P) = IN .[N]
            PS2:Stmts
            Out(P) = OUT .[N1]
            PS3:Stmts 
        }
        SS:SubSection
        }
        [STR:StrandData]
        =>
        $invalidInput(P, $errorInput(IN), N) 
        Specification
        {
        Protocol{
            PS1:Stmts
            PS2:Stmts
            PS3:Stmts
        }
        SS:SubSection
        }
        [STR:StrandData]
        if not IN are variables .

    crl Specification
        {
        Protocol{
            PS1:Stmts
            Out(P) = OUT .[N]
            PS2:Stmts
            In(P) = IN .[N1]
            PS3:Stmts 
        }
        SS:SubSection

        }
        [STR:StrandData]
        $invalidInput(P, $errorInput(IN), N1) 
        =>
        Specification
        {
        Protocol{
            PS1:Stmts
            PS2:Stmts
            PS3:Stmts
        }
        SS:SubSection
        }
        [STR:StrandData]
        if not IN are variables .

    crl Specification
        {
            Protocol
            {
                PS1:Stmts
                In(P) = IN .[N]
                PS2:Stmts
            }
            SS:SubSection
        }
        =>
        $missingOutput(P, N)
        Specification
        {
            Protocol
            {
                PS1:Stmts
                PS2:Stmts
            }
            SS:SubSection
        }
           if not $out P listed in (PS1:Stmts PS2:Stmts) .

       op $out_listed in_ : Role Stmts -> Bool .
       eq $out P listed in (Out(P) = OUT .[N] SS:Stmts) = true .
       eq $out P listed in pass = false .
       eq $out P listed in (S:Stmt SS:Stmts) = $out P listed in SS:Stmts [owise] .

       ---Indicates that the first argument is missing an output statement.
       op $missingOutput : Role Nat -> [TranslationData] .

    crl [missingInput] : Specification
        {
            Protocol
            {
                PS1:Stmts
                Out(P) = OUT .[N]
                PS2:Stmts
            }
            SS:SubSection
        }
        =>
        $missingInput(P, N)
        Specification
        {
            Protocol
            {
                PS1:Stmts
                PS2:Stmts
            }
            SS:SubSection
        }
       if not $in P listed in (PS1:Stmts PS2:Stmts) .

       op $in _ listed in _ : Role Stmts -> Bool .
       eq [in1] : $in P listed in (In(P) = IN .[N] SS:Stmts) = true .
       eq [in2] : $in P listed in pass = false .
       eq [in3] : $in P listed in (S:Stmt SS:Stmts) = 
        $in P listed in SS:Stmts [owise] .

       ---Indicates that we're missing an input statement for the first argument. 
       op $missingInput : Role Nat -> [TranslationData] .

    ---An error indicating that one of the inputs was not a variable. Lifts the 
    ---entire term to the kind, so that we can check if there is an error by checking
    ---if the result sort is at the kind. If it is, we look through the output for
    ---the appropriate error.
    ---Arguments:
     ---   1. The Principal with the invalid input
     ---   2. The first invalid input.
     ---   3. The line number on which the error occured.
    op $invalidInput : Role Msg Nat -> [TranslationData] .

    ---Gives us the first input that is not a variable.
    op $errorInput : MsgSet -> Msg .
    eq $errorInput(V:Msg, IN) = if V:Msg are variables then $errorInput(IN) else V:Msg fi .

    op _are variables : MsgSet -> Bool .
    ceq (V:Msg, IN) are variables = IN are variables if UPV:Term := upTerm(V:Msg) /\ 
        UPV:Term :: Variable .
    eq emptyMsgSet are variables = true .
    ceq (V:Msg, IN) are variables = false if UPV:Term := upTerm(V:Msg) /\ 
        not UPV:Term :: Variable .

    **************************Protocol Steps***************************
    ---1 . A -> B : T |- T .[LN] where LN is the current line number.
    vars TA TB : Msg .
    vars A B : Role .
    vars INA OUTA INB OUTB : MsgSet .
    var MSA MSB : SMsgList-L .
    var FSA FSB : FreshSet .
    ---(
    The following  rule populates strands of A and B with the appropriate
    term, and extracts the fresh variables from TA.
    Observe that this rule requires both A's and B's strands to already
    exist.
    Note that the messages are to the left of |. This is
    because the message list to the left is left associative, so we can append
    messages to the end. Also, we'll need the messages to be in front of the 
    bar for the attacks anyway, so this just eases implementation of the
    attack states. We'll move the
    bars to the end when we actually build the maude module.
    ---)
    rl Specification
       {
           Protocol
            {
                N . A -> B : TA |- TB .[LN]
                S:Stmts
            }
            SS:SubSection
       }
       [DEFS]
       [A |-> {INA} :: FSA :: [MSA | nil]{OUTA} &
        B |-> {INB} :: FSB :: [MSB | nil]{OUTB} &
        SP:StrandData]
       =>
       Specification
       {
           Protocol
            {
                S:Stmts
            }
            SS:SubSection
       }
       [DEFS]
       [A |-> {INA} :: FSA, $fresh($applyDefs(TA, DEFS)) :: 
            [MSA, +($applyDefs(TA, DEFS)) | nil] {OUTA} &
        B |-> {INB} :: FSB :: [MSB, -($applyDefs(TB, DEFS)) | nil]{OUTB} &
        SP:StrandData] .


        ---(
            $fresh extracts the variables of sort fresh from the passed 
            term [note that all terms passed to this function are user-defined
            terms, which must all be a subsort of Msg].
        ---)
        op $fresh : Msg -> FreshSet .
        eq $fresh(T:Msg) = $fresh(upTerm(T:Msg), empty) .

        ---(
        The first argument represents the list of terms that need to be 
        searched through for fresh variables, while the second argument 
        accumulates any found fresh variables.
        ---)
        op $fresh : TermList TermList -> FreshSet .

        ---These three rules are the base cases: a single variable, or a 
        ---single constant.
        ceq $fresh(T:Variable, TL:TermList) = $downFresh((T:Variable, TL:TermList)) 
        if getType(T:Variable) == 'Fresh .
        ceq $fresh(T:Variable, TL:TermList) = $downFresh(TL:TermList) 
        if getType(T:Variable) =/= 'Fresh .
        eq $fresh(T:Constant, TL:TermList) = $downFresh(TL:TermList) .

        ---The first equation deals with the case where the termlist to
        ---be checked for Fresh variables contains a single term of the
        ---form f(t_1, t_2, ..., t_n) (which is not a base case, because we 
        ---need to check t_1, t_2, ..., t_n).
        eq $fresh(F:Qid[TL:TermList], TL1:TermList) = 
           $fresh(TL:TermList, TL1:TermList) .
        eq $fresh((F:Qid[TL:TermList], TL2:TermList), TL1:TermList) = 
           $fresh((TL:TermList, TL2:TermList), TL1:TermList) .

        ceq $fresh((T:Variable, TL:TermList), TL1:TermList) = 
           $fresh(TL:TermList, (T:Variable, TL1:TermList)) 
           if getType(T:Variable) == 'Fresh /\ TL:TermList =/= empty .
        ceq $fresh((T:Variable, TL:TermList), TL1:TermList) = 
           $fresh(TL:TermList, TL1:TermList) 
           if getType(T:Variable) =/= 'Fresh /\ TL:TermList =/= empty .
        ceq $fresh((T:Constant, TL:TermList), TL1:TermList) = 
            $fresh(TL:TermList, TL1:TermList) 
            if TL:TermList =/= empty .

        ---(
            Given a list of terms representing variables of sort Fresh, 
            calls downterm on each variable, allowing us to then add them 
            to a role's strand.
        ---)
        op $downFresh : TermList -> FreshSet .
        ---This should never appear in the output, even if the user writes
        ---something incorrectly.
        op $error : -> Fresh .
        eq $downFresh((T:Variable, TL:TermList)) = downTerm(T:Variable, $error), 
            $downFresh(TL:TermList) .
        eq $downFresh(empty) = nil .

        eq F:Fresh, F:Fresh, FS:FreshSet = F:Fresh, FS:FreshSet .

endm

mod INTRUDER-SEMANTICS is
    protecting INTRUDER-SYNTAX .
    protecting SECTION-SEMANTICS .
    protecting PROTOCOL-SEMANTICS .

    var DEFS : Definitions .

    ---mb Intruder {IS:IntStmts} : IntruderSection .

    ---(
        Syntactic desugaring. The standard form of an intruder rule is
        MS => M where MS is a [possibly empty] set of messages, and M is a 
        single message.
        These equations put every intruder capability into that form.
    ---)
    eq => MS:MsgSet .[N:Nat] = emptyMsgSet => MS:MsgSet .[N:Nat] .
    eq MS:MsgSet => M:Msg, M1:Msg, MS1:MsgSet .[N:Nat] 
       = 
       MS:MsgSet => M:Msg .[N:Nat] 
       MS:MsgSet => M1:Msg, MS1:MsgSet .[N:Nat] .
    eq MS:MsgSet => emptyMsgSet .[N:Nat] = pass . 
    eq MS1:MsgSet <=> MS2:MsgSet .[N:Nat] = (MS1:MsgSet => MS2:MsgSet .[N:Nat]
                                             MS2:MsgSet => MS1:MsgSet .[N:Nat]) . 

    ---(
        Generates the intruder strand from a single intruder capability. 
        The function signedList constructs a list of signed messages in 
        the structure demanded by a strand [a strand's structure is a bit
        more complicated than you would expect, because the use of narrowing
        keeps us from making the list of messages in a strand associative].
    ---)
    rl [IntruderConversion] :
        Specification
        {
            Intruder
            {
                MS:MsgSet => M:Msg .[N:Nat]
                IS:Stmts
            }
            SS:SubSection 
        }
        [SS:StrandSet]
        [DEFS]
        =>
        [DEFS]
        [:: $fresh(M:Msg) :: 
            [ (nil).SMsgList-L | $signedList($applyDefs(MS:MsgSet, DEFS), 
                $applyDefs(M:Msg, DEFS))] & SS:StrandSet]
        Specification
        {
            Intruder{ IS:Stmts }
            SS:SubSection
        } .

        ---(
        Given a set of messages, m_1, m_2, ..., m_n and a single message, m,
        returns a signed list of messages: -[m_1], -[m_2], ..., -[m_n], +[m].
        Note this function is technically not a function, because the same
        set can generate different functions depending on the order in which
        elements are removed from the set. However, the order of received
        messages does not matter for intruder strands, so this nondeterminism 
        doesn't affect the semantics of the specification.

        Note that a SMsgList-R list is considered right associative for parsing
        purposes, meaning you can only extract and append messages from the 
        front of the list, not the back.
        ---)
        op $signedList : MsgSet Msg -> SMsgList-R .
        op $signedList : MsgSet SMsgList-R -> SMsgList-R .
        eq $signedList(MS:MsgSet, M:Msg) = $signedList(MS:MsgSet, (+(M:Msg), nil)) .
        eq $signedList((M:Msg, MS:MsgSet), SMR:SMsgList-R) =
            $signedList(MS:MsgSet, (-(M:Msg), SMR:SMsgList-R)) .
        eq $signedList(emptyMsgSet, SMR:SMsgList-R) = SMR:SMsgList-R .

    eq S:Strand & S:Strand = S:Strand .

    eq Specification{Intruder{pass} SS:SubSection} = 
        Specification{$emptyIntruder SS:SubSection} .

endm


mod ATTACK-SEMANTICS is
    protecting SECTION-SEMANTICS .
    protecting META-TERM .
    protecting ATTACK-SYNTAX .
    protecting PROTOCOL-SEMANTICS .

    var P : Role .

    ---This equation builds the set of attack data that the translation
    ---rules depended on. By waiting until the Protocol section has been
    ---translated before creating the empty set of attack data, we can
    ---guarantee that the Attack section won't be processed, until the 
    ---Protocol section has been fully translated.
    eq Specification { Protocol { pass } SS:SubSection } = 
        [$emptyAttackData] Specification { $emptyProtocol SS:SubSection }  .

            
    var DEFS : Definitions .
    var N : Nat .

    ---(
    Builds attacks that have at least one without block.
    The variable declarations in brackets are actually terms that allow us to 
    add variables to the attack states, without forcing the user to provide
    to the original term to be translated.
    These declarations will be added to the Maude module when constructing
    the module.
    ---)
    rl [translateAttacksWithNeverPattern] :
    Specification
    {
        Attacks{
            N .{CA:CoreAttack WA:WithoutBlocks}
            A:Stmts
        }
        SS:SubSection 
    }
    [DEFS]
    [SP:StrandData]
    [AT:AttackData]
    =>
    [DEFS]
    [SP:StrandData]
    Specification {Attacks{ A:Stmts} SS:SubSection}
    [var S : StrandSet .] 
    [var K : IntruderKnowledge .]
    [var LIST : SMsgList-R .]
    [ AT:AttackData
        [N:Nat |-> $genAttackStrands(CA:CoreAttack, $subst(CA:CoreAttack, DEFS),  SP:StrandData, DEFS)
               ||  $genIntruderKnowledge(CA:CoreAttack, $subst(CA:CoreAttack, DEFS), DEFS)
               ||  nil
               ||  nil
               ||  never($genNeverPatterns(WA:WithoutBlocks, SP:StrandData, DEFS))]] .
    

---(
Builds attacks that don't have any without blocks. Other than the processing
of without blocks, this and the previous rule are identical.
---)
rl [translateAttackWithoutNever] :
    Specification
    {
        Attacks{
            N .{CA:CoreAttack}
            A:Stmts
        }
        SS:SubSection 
    }
    [SP:StrandData]
    [DEFS]
    [AT:AttackData]
    =>
    [var S : StrandSet .] 
    [var K : IntruderKnowledge .]
    [var LIST : SMsgList-R .]
    [SP:StrandData]
    [DEFS]
    Specification {Attacks{A:Stmts} SS:SubSection}
    [AT:AttackData 
        [N:Nat |->    $genAttackStrands(CA:CoreAttack, $subst(CA:CoreAttack, DEFS), SP:StrandData, DEFS)
               || $genIntruderKnowledge(CA:CoreAttack, $subst(CA:CoreAttack, DEFS), DEFS)
               || nil
               || nil
               || nil]] .

    eq [V:VarDecl] [V:VarDecl] = [V:VarDecl] .

    ---(
    Given a set of core attack statements (intruder knowledge, execution
    statements, substitutions, and constraints), a substitution, the set of
    strands computed while translating the Protocol section, and the user-defined
    definitions, returns a set of strands [instantiated by the second argument]
    that correspond to the execution statements in the first argument.
    So if we have the following execution statements:
    A executes protocol .
    B executes protocol .
    and the substitution theta, then
    we get the set of strands 
    s_A\theta & s_B\theta
    where s_A is A's strand, and s_B is B's strand.
    ---)
    op $genAttackStrands : CoreAttack Mappings StrandData Definitions ~> StrandSet .
    vars IN OUT : MsgSet .
    eq $genAttackStrands(R:Role executes protocol .[N] CA:CoreAttack, 
        M:Mappings, R:Role |-> {IN}S:Strand{OUT} & SD:StrandData, DEFS)
    = 
      $applyMapping($applyDefs(S:Strand, DEFS), M:Mappings) &  
       $genAttackStrands(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) .

    eq $genAttackStrands(R:Role executes up to N1:Nat .[N] CA:CoreAttack,
        M:Mappings, R:Role |-> {IN}S:Strand{OUT} & SD:StrandData, DEFS)
    =
        $applyMapping($applyDefs($prefix(S:Strand, N1:Nat), DEFS), M:Mappings) &
        $genAttackStrands(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) .

    ceq $genAttackStrands(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) = empty 
    if  not $hasExecutionStmt(CA:CoreAttack) .

    eq $genAttackStrands(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) = empty [owise] .


    op $hasExecutionStmt : CoreAttack -> Bool .
    eq $hasExecutionStmt(R:Role executes protocol .[N] CA:CoreAttack) = true .
    eq $hasExecutionStmt(R:Role executes up to N1:Nat . [N] CA:CoreAttack) = true .
    eq $hasExecutionStmt(CA:CoreAttack) = false [owise] .
        

    ---(
        Given a Strand, :: r1 :: [m_1, m_2, ..., m_l] and a natural number
        n < l, returns a prefix of the strand of the form:
            :: r1 :: [m_1, m_2, ..., m_n | L] where L is a variable 
            representing a list of signed messages.
    ---)
    op $prefix : Strand Nat -> Strand .
    op $prefixList : SMsgList-L Nat -> SMsgList-L .
    eq $prefix(:: r1:FreshSet :: [L:SMsgList-L | nil], N) = :: r1:FreshSet :: [$prefixList(L:SMsgList-L, N) | LIST] .

    ---All of this "makeAssoc" and "makeRightAssoc" is necessary because
    ---strand lists aren't associative (because associative lists have 
    ---infinitary unification algorithms). In fact, an SMsgList-L is 
    ---considered left associative, meaning that you can only pluck 
    ---messages off the end. Not exactly useful when you need the FIRST 
    ---n messages in the list.
    eq $prefixList(L:SMsgList-L, N:Nat) = $makeLeftAssoc($prefix($makeAssoc(L:SMsgList-L), N:Nat)) .

        
    sort $SMsgList .
    subsort SMsg < $SMsgList .
    op $makeAssoc : SMsgList-L -> $SMsgList .
    op _$;$_ : SMsg SMsg -> $SMsgList [assoc id: $nil] .
    op $nil : -> $SMsgList .
    eq $makeAssoc((L:SMsgList-L, M:SMsg)) = $makeAssoc(L:SMsgList-L) $;$ M:SMsg .
    eq $makeAssoc(nil) = $nil .

    op $prefix : $SMsgList Nat -> $SMsgList .
    eq $prefix(M:SMsg $;$ L:$SMsgList, s(N)) = M:SMsg $;$ $prefix(L:$SMsgList, N) .
    eq $prefix(L:SMsgList, 0) = $nil .

    op $makeLeftAssoc : $SMsgList -> SMsgList-L .
    eq $makeLeftAssoc(L:$SMsgList $;$ M:SMsg) = 
        $makeLeftAssoc(L:$SMsgList), M:SMsg .
    eq $makeLeftAssoc($nil) = nil .  

    vars N1 N2 N3 N4 : Nat .

    ---(
    Given a set of core attack statements, and a set of definitions, returns
    an idempotent substitution that has been built from the substitution 
    statements in 
    argument 1, and has had the definitions applied to its range. 

    Third argument is the list of line numbers on which the first substitution appears.

    This function, also checks to make sure that the generated substitution
    is a valid order-sorted substitution.
    ---)
    op $subst : CoreAttack Definitions -> Mapping .
    eq $subst(CA:CoreAttack, DEFS) = $makeIdem($isValid($extractMappings(CA:CoreAttack, DEFS)), 
        $mappingLineNums(CA:CoreAttack)) .

    ---(
    Given a set of core attack statements, extracts all of the substitution
    statements Subst(A) = v_1 |-> t_1, v_2 |-> t_2, ... , v_m |-> t_m .[n], and
    constructs a set of mappings
    v_1 |-> ${t_1 ; n}$, v_2 |-> ${t_2 ; n}$, ... , v_m |-> ${t_m ; v_m}$ that
    associates to each range message t_i the line on which v_i |-> t_i is
    defined. This information will be needed when printing error messages
    about poorly formed substitutions.
    ---)
    op $extractMappings : CoreAttack Definitions -> MsgPairs .
    
    eq $extractMappings(Subst(R:Role) = M:Mappings .[N] CA:CoreAttack, DEFS) = 
        $buildMsgPairs(M:Mappings, N, DEFS) $extractMappings(CA:CoreAttack, DEFS) .
    eq $extractMappings(CA:CoreAttack, DEFS) = $none [owise] .

    ---(
    Given a core attack, returns the list of line numbers on which the substitutions appear.
    ---)
    op $mappingLineNums : CoreAttack -> MyNatList .
    eq $mappingLineNums(Subst(R:Role) = M:Mappings .[N] CA:CoreAttack) = N : $mappingLineNums(CA:CoreAttack) .
    eq $mappingLineNums(CA:CoreAttack) = mt [owise] .


    ---(
    Given a set of mappings, a natural number representing the line number on
    which the mappings were defined, and the user-defined definitions, this
    function appends the passed line number to the range of each mapping, 
    encoding the line number on which that particular pair was declared. It
    also applies the definitions to the range of each pair.
    ---)
    op $buildMsgPairs : Mappings Nat Definitions -> MsgPairs .
    eq $buildMsgPairs((M:Msg |-> M1:Msg, MS:Mappings), N:Nat, DEFS) = 
        M:Msg |-> ${$applyDefs(M1:Msg, DEFS) ; N:Nat}$ $buildMsgPairs(MS:Mappings, N:Nat, DEFS) .
    eq $buildMsgPairs(M:Msg |-> M1:Msg, N:Nat, DEFS) = M:Msg |-> ${$applyDefs(M1:Msg, DEFS) ; N:Nat}$ .
    eq $buildMsgPairs(id, N:Nat, DEFS) = $none .

    var L : MyNatList .
  
    ---(
    First argument is the list of mappings to be validated. Note that the line numbers are already encoded inside the MsgPairs, so
    we don't need to separately track the line numbers.
    ---)
    op $isValid : MsgPairs -> Mappings .
816
    eq $isValid(M:MsgPairs) = $checkSorts($isFunction(M:MsgPairs))  .
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836

    ---(
    Line numbers are already encoded in the $$$notAFunction error term, so we don't need to encode them separately.
    ---)
    op $isFunction : MsgPairs -> MsgPairs .
    eq $isFunction(M:Msg |-> ${M1:Msg ; N1:Nat}$ M:Msg |-> ${M2:Msg ; N2:Nat}$ 
        MS:MsgPairs) 
    = 
        if M1:Msg == M2:Msg 
        then 
            $isFunction(M:Msg |-> ${M1:Msg ; N1:Nat}$ MS:MsgPairs) 
        else
            $$$notAFunction(M:Msg |-> ${M1:Msg ; N1:Nat}$ ${M2:Msg ; N2:Nat}$
                $isFunction(M:Msg |-> ${M1:Msg ; N1:Nat}$ MS:MsgPairs)) 
        fi .
    eq $isFunction(MS:MsgPairs) = MS:MsgPairs [owise] .
    
    ---We only care about those mappings that have more than mapping. Anything
    ---with a single result term is not ambiguous, and is left over from how
    ---we implemented $isFunction.
837 838 839 840
    eq $$$notAFunction(M:Msg |-> ${M1:Msg ; N1:Nat}$ MS:[MsgPairs]) =
        $$$notAFunction(MS:[MsgPairs]) .
    eq $$$notAFunction($$$notAFunction(MS1:[MsgPairs]) MS2:[MsgPairs]) = 
        $$$notAFunction(MS1:[MsgPairs] $$$;;;$$$ MS2:[MsgPairs]) .
841
    eq $$$notAFunction(M:Msg |-> MN1:MsgNumSet M:Msg |-> MN2:MsgNumSet 
842
        MS:[MsgPairs]) 
843
    =
844 845
        $$$notAFunction(M:Msg |-> MN1:MsgNumSet MN2:MsgNumSet $$$;;;$$$ 
            MS:[MsgPairs]) .
846 847 848 849 850 851 852 853 854 855 856
        
        
    
    ---Checks to make sure each mapping is a valid order-sorted substitution.
    op $checkSorts : MsgPairs -> Mappings .
    eq $checkSorts(M:Msg |-> ${M1:Msg ; N}$ MS:MsgPairs) = 
        $isValidPair(M:Msg, M1:Msg, N), $checkSorts(MS:MsgPairs) .

    eq $checkSorts($none) = id .

    ---Checks if the sort of the first argument is a supersort of the sort of
857
    ---the second argument.
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
    op $isValidPair : Msg Msg Nat -> Mapping .
    ceq $isValidPair(D:Msg, R:Msg, N) = 
        if sortLeq(META-MOD:Module, getType(metaReduce(META-MOD:Module, upTerm(R:Msg))), getType(metaReduce(META-MOD:Module, upTerm(D:Msg))))
        then
            D:Msg |-> R:Msg
        else
            $$$invalidSorting(D:Msg |-> ${R:Msg ; N}$)
        fi 
    if META-MOD:Module := upModule('PROTOCOL-EXAMPLE-SYMBOLS, false) .

    ---Given a mapping, returns the idempotent version, by applying the
    ---mapping to itself until we reach a fixed point.
    ---Second argument is the line number on which the mapping appears
    op $makeIdem : Mappings MyNatList -> Mappings .      
    eq $makeIdem(id, L) = id .
    eq $makeIdem(M:Mappings, L) = $makeIdem(M:Mappings, M:Mappings, false, 0, L) [owise] .

    ---First argument is the original mapping
    ---Second argument is the partially idempotenized mapping
    ---Third argument is how many times we've applied the original mapping
    ---to the idempotenized mapping.
    ---Fourth argument indicates whether or not we've reached the fixpoint.
    ---Fifth argument is the list of line numbers on which the substituions that make up the mapping appear.
    ---Result is the idempotenized mapping.
    op $makeIdem : Mappings Mappings Bool Nat MyNatList -> Mappings .
    eq $makeIdem(M:Mappings, M1:Mappings, true, N, L:MyNatList) = M1:Mappings .
    eq $makeIdem(M:Mappings, M1:Mappings, false, 101, L:MyNatList) = 
        $$$infiniteIdem(M:Mappings, L:MyNatList) .
    ceq $makeIdem(M:Mappings, M1:Mappings, false, N:Nat, L:MyNatList) = 
        $makeIdem(M:Mappings, M2:Mappings, M1:Mappings == M2:Mappings, s(N:Nat), L:MyNatList)
    if  M2:Mappings := $applyMapping(M:Mappings, M1:Mappings) /\ N:Nat < 101 .

---(
    op _===_ : Mappings Mappings -> Bool .
    eq M:Mappings === M:Mappings = true .
    eq M:Mappings === M1:Mappings = false [owise] .
---)
    ---Applies the first mapping to the range of the second mapping, and
    ---returns the resultant mapping.
    op $applyMapping : Mappings Mappings -> Mappings .
    op $msgError : -> [Msg] .
    eq $applyMapping(M2:Mappings, (N:Msg |-> N1:Msg, M:Mappings)) = 
        N:Msg |-> downTerm($applyMapping1(upTerm(N1:Msg), M2:Mappings), $msgError), 
        $applyMapping(M2:Mappings, M:Mappings) .
    ---Here we are treating id as the base case of the recursion, not as 
    ---an empty substitution. Technically, idM should be M, not id. However,
    ---the equation $applyMapping(M, id) = M would have the effect of copying
    ---M into the composed substitution, which is most definitely not what
    ---we want, because this would end up duplicating some mappings, and
    ---creating ambiguity for others.
    eq $applyMapping(M:Mappings, id) = id .

    ---If we go too many iterations of self-application without hitting
    ---idempotency, then this error gets added to the TranslationData pool.
    op $$$infiniteIdem : Mappings MyNatList -> [Mappings] .

    ---op $$$missingSubstitution : MsgSet Mappings Nat -> [Strand] .   

    ---(
    The following are a group of very messy functions that instantiate the 
    passed strand with the passed mapping. 

    Here be dragons. 
    ---)
    op $applyMapping : Strand Mappings ~> Strand .
    eq $applyMapping(S:Strand, id) = S:Strand .
    eq $applyMapping(S:Strand, M:Mappings) = 
        $applyMapping(upTerm(S:Strand), M:Mappings) [owise] .

    op $applyMapping : Term Mappings ~> Strand .
    op $error : Term -> Strand .
    eq $applyMapping(T:Term, id) = downTerm(T:Term, $error(T:Term)) [print "Strand meta: " T:Term] .
    eq $applyMapping('::_::`[_|_`][F:Term, ML:Term, 'nil.SMsgList-R], M:Mappings) =
        downTerm('::_::`[_|_`][F:Term, $applyMapping1(ML:Term, M:Mappings), 
            'nil.SMsgList-R], 
            $error('::_::`[_|_`][F:Term, $applyMapping1(ML:Term, M:Mappings), 
            'nil.SMsgList-R])) [owise print "Strand meta term list: " ML:Term] .
935 936 937 938 939 940 941 942
    ---Applies if we're using the "up to" syntax, in which case the last 
    ---term in the list is a constant (which Maude-NPA will treat as a variable) 
    ---of sort LIST, NOT nil. 
    eq $applyMapping('::_::`[_|_`][F:Term, ML:Term, 'LIST.SMsgList-R], M:Mappings) =
        downTerm('::_::`[_|_`][F:Term, $applyMapping1(ML:Term, M:Mappings), 
            'LIST.SMsgList-R], 
            $error('::_::`[_|_`][F:Term, $applyMapping1(ML:Term, M:Mappings), 
            'LIST.SMsgList-R])) [owise print "Strand meta term list: " ML:Term] .
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

    op $applyMapping1 : TermList Mappings ~> TermList .
    var M : Mappings .
    var T : Term .
    var TL TL1 : TermList .
    var F : Qid .
    vars M1 M2 : Msg .
    op $error : -> Msg .
    var T1 : Term .
    eq $applyMapping1(TL:TermList, id) = TL:TermList .
    ceq $applyMapping1((T, TL), (M1 |-> M2, M)) = T1, 
        $applyMapping1(TL, (M1 |-> M2, M)) 
    if downTerm(T, $error) == M1 /\ 
       T1 := upTerm(M2) /\ 
       M3:Msg := downTerm(T, $error) [print "Downterm: " M3:Msg] .
    eq $applyMapping1((F[TL], TL1), M) = 
        F[$applyMapping1(TL, M)], $applyMapping1(TL1, M) [owise] .
    eq $applyMapping1((C:Constant, TL), M) = 
        C:Constant, $applyMapping1(TL, M) [owise] .
    eq $applyMapping1((V:Variable, TL), M) = 
        V:Variable, $applyMapping1(TL, M) [owise] .
    eq $applyMapping1(empty, M) = empty .

    op $applyDefs : Mappings Definitions -> Mappings .
    eq $applyDefs(M:Mappings, $noDefs) = M:Mappings .
    eq $applyDefs(id, D:Definitions) = id .
    eq $applyDefs((M1:Msg |-> M2:Msg, MP:Mappings), D:NeDefinitions) = 
        $applyDefs(M1:Msg, D:NeDefinitions) |-> $applyDefs(M2:Msg, D:NeDefinitions), 
        $applyDefs(MP:Mappings, D:NeDefinitions) .
    eq $applyDefs(M1:Msg |-> M2:Msg, D:NeDefinitions) = 
        $applyDefs(M1:Msg, D:NeDefinitions) |-> $applyDefs(M2:Msg, D:NeDefinitions) .

    ---(
    Given a set of core attack statements, a set of mappings, and a set of 
    definitions, returns a sequence of disequality constraints and inI 
    statements to use as an attack's intruder knowledge.
    ---)
    op $genIntruderKnowledge : CoreAttack Mappings Definitions -> IntruderKnowledge .
    eq $genIntruderKnowledge((Intruder learns MS:MsgSet .[N]) CA:CoreAttack, M:Mappings, DEFS)
    =
        $msgSetToInI($applyMapping($applyDefs(MS:MsgSet, DEFS), M:Mappings)),
        $genIntruderKnowledge(CA:CoreAttack, M:Mappings, DEFS) .

    eq $genIntruderKnowledge(With constraints I:Disequalities .[N] CA:CoreAttack,
        M:Mappings, DEFS)
    =
       $ineqToKnow-!=($applyMapping($applyDefs(I:Disequalities, DEFS), M:Mappings)),
       $genIntruderKnowledge(CA:CoreAttack, M:Mappings, DEFS) .
    eq $genIntruderKnowledge(CA:CoreAttack, M:Mappings, DEFS) = empty .

    ---(
    Converts disequalities into disequalities in Maude-NPA. We don't use
    IntruderKnowledge-!= directly because of issues with pre-regularity and
    garbage and stuff. I are eloquent!
    ---)
    op $ineqToKnow-!= : Disequalities -> IntruderKnowledge-!= .

    eq $ineqToKnow-!=(M1:Msg $!= M2:Msg, I:Disequalities) = M1:Msg != M2:Msg, $ineqToKnow-!=(I:Disequalities) .
    eq $ineqToKnow-!=($noIneq) = empty .

    op $applyMapping : Disequalities Mappings -> Disequalities .
    eq $applyMapping((M1:Msg $!= M2:Msg, I:Disequalities), M:Mappings) 
    = 
        $applyMapping(M1:Msg, M:Mappings) $!= $applyMapping(M2:Msg, M:Mappings), 
        $applyMapping(I:Disequalities, M:Mappings) .
    eq $applyMapping($noIneq, M:Mappings) = $noIneq .

        

    op $applyDefs : Disequalities Definitions -> Disequalities .
    eq $applyDefs((M1:Msg $!= M2:Msg, I:Disequalities), D:Definitions) = 
        $msgToDisEq($applyDefs($disEqToMsg(M1:Msg $!= M2:Msg), D:Definitions)),
        $applyDefs(I:Disequalities, D:Definitions) .

    eq $applyDefs(M1:Msg $!= M2:Msg, D:Definitions) = 
        $msgToDisEq($applyDefs($disEqToMsg(M1:Msg $!= M2:Msg), D:Definitions)) .

    ---(
    Converts a set of disequalities to MsgSets, which allows us to use the 
    applyDefs defined for sets of messages.

    Note that I could have defined an applyDefs function that actually
    handled disequalities directly instead of defining the following two
    (partial) functions, but I'm a lazy bum.
    ---)
    op $disEqToMsg : Disequality -> MsgSet .
    eq $disEqToMsg(M1:Msg $!= M2:Msg) = M1:Msg, M2:Msg .

    ---(
    Converts a pair of messages into a Disequality. Note that this operator
    is only defined for message sets of size 2. This partial function is 
    invoked after we've finished applying definitions to the messages in the
    Disequality.
    ---)
    op $msgToDisEq : MsgSet ~> Disequality .
    eq $msgToDisEq((M1:Msg, M2:Msg)) = M1:Msg $!= M2:Msg .

    ---(
    Pretty sure this was implemented as part of instantiating the inI 
    statements (which started out as a set of messages), and we're leveraging
    it for the Disequalities as well.
    ---)
    op $applyMapping : MsgSet Mappings ~> MsgSet .
    op $errorMsgSet : -> MsgSet .
    eq $applyMapping(MS:MsgSet, MP:Mappings) = 
        downTerm($applyMapping1(upTerm(MS:MsgSet), MP:Mappings), $errorMsgSet) .

    op $msgSetToInI : MsgSet -> IntruderKnowledge .
    eq $msgSetToInI((M:Msg, MS:MsgSet)) = M:Msg inI, $msgSetToInI(MS:MsgSet) .
    eq $msgSetToInI(emptyMsgSet) = empty .

    ---(
        &&&
        Given a set of without blocks, the strand data computed by processing
        the Protocol section, and a set of user-provided definitions, generates
        a set of never patterns.
    ---)
    op $genNeverPatterns : WithoutBlocks StrandData Definitions ~> NeverPatternSet .
    eq $genNeverPatterns(without: CA:CoreAttack WB:WithoutBlocks,
        SD:StrandData, DEFS)
    =
       $neverPattern(CA:CoreAttack, $subst(CA:CoreAttack, DEFS), SD:StrandData, DEFS)
       $genNeverPatterns(WB:WithoutBlocks, SD:StrandData, DEFS) .
    eq $genNeverPatterns(without: CA:CoreAttack, SD:StrandData, DEFS)
    =
       $neverPattern(CA:CoreAttack, $subst(CA:CoreAttack, DEFS), SD:StrandData, DEFS) .

    ---(
        Given a core attack (hopefully extracted from a without block), a 
        substitution, the strand data computed from the Protocol section, and
        the user provided definitions, returns a never pattern.
    ---)
    op $neverPattern : CoreAttack Mappings StrandData Definitions ~> NeverPattern  .
    eq $neverPattern(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) 
    =
       $genAttackStrands(CA:CoreAttack, M:Mappings, SD:StrandData, DEFS) & S
       || $genIntruderKnowledge(CA:CoreAttack, M:Mappings, DEFS), K .

    ---This is used to indicate that we can begin converting the parsed data into
    ---the Maude-NPA modules.
    eq Specification{Attacks{pass} SS:SubSection} = 
        Specification{$emptyAttacks SS:SubSection} .

endm

mod SPECIFICATION-SEMANTICS is
    protecting SECTION-SEMANTICS .
    protecting PROTOCOL-SEMANTICS .
    protecting INTRUDER-SEMANTICS .
    protecting ATTACK-SEMANTICS .
endm

mod PSL-SEMANTICS is
    protecting PSL-SYNTAX .
    protecting SPECIFICATION-SEMANTICS .
endm

---Translates the Translated Data into a Maude-NPA module .
fmod TRANSLATION-TO-MAUDE-NPA-HELPER-FUNCTIONS-SEMANTICS is
    protecting TRANSLATION-TO-MAUDE-NPA-SYNTAX .

    ---(
        Transforms Strand Data into sets of strand suitable for use as
        a protocol specification.
    ---)
    op convert : StrandData -> StrandSet .

    eq convert(A:Role |-> {IN:MsgSet} S:Strand {OUT:MsgSet} & SP:StrandData)
        = shiftBarLeft(S:Strand) & convert(SP:StrandData) .
    eq convert(mt) = empty .

    eq shiftBarLeft(:: F:FreshSet :: [L:SMsgList-L, M:SMsg | R:SMsgList-R ]) = 
        shiftBarLeft(:: F:FreshSet :: [L:SMsgList-L | M:SMsg, R:SMsgList-R]) .
    eq shiftBarLeft(:: F:FreshSet :: [nil | R:SMsgList-R]) = 
        :: F:FreshSet :: [nil | R:SMsgList-R] .

    eq shiftBarLeft(:: F:FreshSet :: [L:SMsgList-L, S:Synchro | R:SMsgList-R ]) =
        shiftBarLeft(:: F:FreshSet :: [L:SMsgList-L | S:Synchro, R:SMsgList-R]) .

    ---(
    Converts translated attack data into a list of attack states.
    ---)
    op convert : AttackData -> AttackList .
    eq convert([N:Nat |-> A:System] AD:AttackData) = 
        (eq ATTACK-STATE(N:Nat) = A:System [nonexec] .) 
        convert(AD:AttackData) .
    eq convert($emptyAttackData) = $emptyAttackList .

    ---Once we've finished building the Maude-NPA module, we eliminate 
    ---everything else. Including YOUR FACE!!!! 
    ops D-X NOTHING! : -> TranslationData .
    eq D-X = NOTHING! .
    
    ceq M:ModuleNPA TD:TranslationData = M:ModuleNPA 
    if TD:TranslationData =/= mt .
        
endfm



mod TRANSLATION-TO-MAUDE-NPA is 
    protecting PSL-SEMANTICS .
    protecting TRANSLATION-TO-MAUDE-NPA-HELPER-FUNCTIONS-SEMANTICS .
    protecting TRANSLATION-TO-MAUDE-NPA-SYNTAX .

    ---(
    Wraps all the variable declarations that need to be part of the 
    Maude-NPA module inside a single operator, for ease of access 
    later.
    ---)
    op $varList : VarDecls -> TranslationData .

    eq Specification{$emptyProtocol $emptyIntruder $emptyAttacks} 
    = $translate $varList($emptyAttackList) .

    eq [V:VarDecl] $varList($emptyAttackList) = $varList(V:VarDecl) .
    eq [V:VarDecl] $varList(VL:VarDecls) = $varList(V:VarDecl VL:VarDecls) . 

1161 1162 1163
    eq $varList(B:VarDecls V:VarDecl M:VarDecls V:VarDecls E:VarDecls) = $varList(B:VarDecls V:VarDecl M:VarDecls E:VarDecls) .
    eq $varList(B:VarDecls V:VarDecl M:VarDecls V:VarDecls) = $varList(B:VarDecls V:VarDecl M:VarDecls) .
        
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
    ---The presence of the $translate constant (added by the equation above) 
    ---ensures that we don't try to construct the Maude-NPA module until
    ---the PSL specification has been fully translated.
    rl [TranslationDataToMaudeNPASyntax] : 
        $translate [SP:StrandData] [SS:StrandSet] 
        $varList(V:VarDecls) 
        [[N:Nat |-> S:System] AT:AttackData]
    =>
    (fmod PROTOCOL-SPECIFICATION is 
        protecting PROTOCOL-EXAMPLE-SYMBOLS .
        protecting DEFINITION-PROTOCOL-RULES .
        protecting DEFINITION-CONSTRAINTS-INPUT .
        eq STRANDS-DOLEVYAO = SS:StrandSet [nonexec] .
        eq STRANDS-PROTOCOL =  convert(SP:StrandData) [nonexec] .
        (V:VarDecls 
        convert([N:Nat |-> S:System] AT:AttackData))
    endfm) .

    rl [TranslationDataToMaudeNPANoAttacks] : 
        $translate [SP:StrandData] [SS:StrandSet] [$emptyAttackData]
        $varList(V:VarDecls)
    =>
    (fmod PROTOCOL-SPECIFICATION is 
        protecting PROTOCOL-EXAMPLE-SYMBOLS .
        protecting DEFINITION-PROTOCOL-RULES .
        protecting DEFINITION-CONSTRAINTS-INPUT .
        eq STRANDS-DOLEVYAO = SS:StrandSet [nonexec] .
        eq STRANDS-PROTOCOL =  convert(SP:StrandData) [nonexec] .
        V:VarDecls
    endfm) .

endm

---(
1198 1199
This module handles protocol composition. Note that this module, and TRANSLATION-TO-MAUDE-NPA
are NOT compatible. One or the other needs to be chosen for
1200
rewriting in, depending on whether we're translating a standard PSL 
1201
specification, or a composition. This decision will have to be made at the Python level.
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
---)
mod COMPOSITION is
    protecting COMPOSITION-SYNTAX .
    protecting PSL-SEMANTICS .

    ---(
    translate wraps a copy of the specification of each protocol being
    composed. Then, each specification is translated independently of 
    the others. Once the translation is complete, we wrap the translated 
    data in "translated" to mark that we're done.
    ---)
    eq $translate(N:Nat, Specification{$emptyProtocol $emptyIntruder $emptyAttacks} T:TranslationData) 
    = $translated(N:Nat, T:TranslationData) .


    vars RO1 RO2 : Role .
    vars N M P : Nat .
    vars IN1 IN2 OUT1 OUT2 : MsgSet .
    vars r1 r2 : FreshSet .
    vars L1 L2 : SMsgList-L .
    vars R1 R2 : SMsgList-R .
    vars T1 T2 : TranslationData .
    vars SD1 SD2 : StrandData .

    vars CHILDMSG PARENTMSG : Msg .

    op compose : How Role Role -> CompType . 

    vars L3 L4 : SMsgList-L .
    vars R3 R4 : SMsgList-R .

    ---One to one
    ---Note that if we're composing more than two protocols, it may be the
    ---case that a parent strand already exists, because it's the child of
    ---a previous composition. The child strand will always
    ---be created, however.
    ---(
        These rules don't handle the following case:
        P_1-init ;1 P_2-init
        P_1-init ;1 P2-resp
        which say that P_1 may compose with either P_2-init or P_2-resp, but
        only one at a time. 
        So, we need to distinguish between adding a second potential child, and 
        adding your first child.
    ---)
    crl $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [comp(N, M) |-> RO1 ;1 RO2 : M:Mappings .[P] C:Composition
         CM:CompList] 
        [SD:StrandData]
        =>
        [comp(N, M) |-> C:Composition CM:CompList]
        $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [RO1 |-> {IN1} :: r1 :: [L1, {RO1 -> RO2 ;; 1-1 ;; PARENTMSG} | R1] {OUT1} &
         RO2 |-> {IN2} :: r2 :: [$concat({RO1 -> RO2 ;; 1-1 ;; CHILDMSG}, L2) | R2] {OUT2} &
         SD:StrandData]
    if not RO1 in SD:StrandData  /\                         
       (CHILDMSG, PARENTMSG) := $synchroMsgs(M:Mappings) .

    crl $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [comp(N, M) |-> RO1 ;1 RO2 : M:Mappings .[P] C:Composition
         CM:CompList] 
        [RO1 |-> {IN1} :: r1 :: [L3 | R3] {OUT1} &
        SD:StrandData]
        =>
        [comp(N, M) |-> C:Composition CM:CompList]
        $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [RO1 |-> {IN1} :: r1 :: [L3, {RO1 -> RO2 ;; 1-1 ;; PARENTMSG} | R3] {OUT1} &
         RO2 |-> {IN2} :: r2 :: [$concat({RO1 -> RO2 ;; 1-1 ;; CHILDMSG}, L2) | R2] {OUT2} &
         SD:StrandData]
    if (CHILDMSG, PARENTMSG) := $synchroMsgs(M:Mappings) .

    ---One to many
    ---Initial generation of strands.
    crl $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [comp(N, M) |-> RO1 ;* RO2 : M:Mappings .[P] C:Composition
         CM:CompList] 
        [SD:StrandData]
    => $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
       $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
       [comp(N, M) |-> C:Composition CM:CompList]
       [RO1 |-> {IN1} :: r1 :: [L1, {RO1 -> ROLE ;; 1-* ;; PARENTMSG} | R1] {OUT1} &
        RO2 |-> {IN2} :: r2 :: [$concat({RO1 -> RO2 ;; 1-* ;; CHILDMSG}, L2) | R2] {OUT2} &
       SD:StrandData]
    if (CHILDMSG, PARENTMSG) := $synchroMsgs(M:Mappings) /\
        not RO1 in SD:StrandData .

    ---This covers the case where one parent is connecting to multiple children.
    crl $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [comp(N, M) |-> RO1 ;* RO2 : M:Mappings .[P] C:Composition
         CM:CompList] 
        [RO1 |-> {IN1} :: r1 :: [L3, S:Synchro | R3] {OUT1} &
        SD:StrandData]
    => $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
       $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
       [comp(N, M) |-> C:Composition CM:CompList]
       [RO1 |-> {IN1} :: r1 :: [L3, S:Synchro | R1] {OUT1} &
        RO2 |-> {IN2} :: r2 :: [$concat({RO1 -> RO2 ;; 1-* ;; CHILDMSG}, L2) | R2] {OUT2} &
       SD:StrandData]
    if CHILDMSG := $synchroMsgs(S:Synchro, M:Mappings) .

    ---This covers the case where a child from a previous composition is being
    ---used as a parent in the next composition.
    crl $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
        $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
        [comp(N, M) |-> RO1 ;* RO2 : M:Mappings .[P] C:Composition
         CM:CompList] 
        [RO1 |-> {IN1} :: r1 :: [L3 | R3] {OUT1} &
        SD:StrandData]
    => $translated(N, [RO1 |-> {IN1} :: r1 :: [L1 | R1]{OUT1} & SD1] T1)
       $translated(M, [RO2 |-> {IN2} :: r2 :: [L2 | R2]{OUT2} & SD2] T2)
       [comp(N, M) |-> C:Composition CM:CompList]
       [RO1 |-> {IN1} :: r1 :: [L3, {RO1 -> ROLE ;; 1-* ;; PARENTMSG} | R1] {OUT1} &
        RO2 |-> {IN2} :: r2 :: [$concat({RO1 -> RO2 ;; 1-* ;; CHILDMSG}, L2) | R2] {OUT2} &
       SD:StrandData]
    if not $synchroIn(L3) /\
       (PARENTMSG, CHILDMSG) := $synchroMsgs(M:Mappings) .

    op _in_ : Role StrandData -> Bool .

    eq R:Role in R:Role |-> {IN1} S:Strand {OUT1} & SD:StrandData = true .
    eq R:Role in SD:StrandData = false [owise]. 

    op $synchroIn : SMsgList-L -> Bool .
    eq $synchroIn((L1, {R1:Role -> R2:Role ;; H:How ;; M:Msg})) = true  [print "Matching true L1:" L1] .
    eq $synchroIn(L1) = false [owise print "Matching false L1:" L1] .

    eq comp(N, M) |-> emptyComp CM:CompList = CM:CompList .

    ops $compTranslateAttacks $compositionDone : -> TranslationData .
    eq [$noCM] = $compTranslateAttacks .
    ----TODO: Implement translating the attacks.
    eq $compTranslateAttacks = $compositionDone .

    op _in_ : Role StrandData -> Bool .
    eq RO1 in RO1 |-> {IN:MsgSet} S:Strand {OUT:MsgSet} & SD:StrandData 
    = true .
    eq RO1 in SD:StrandData = false [owise] .

    op $concat : Synchro SMsgList-L -> SMsgList-L .
    eq $concat(S:Synchro, (R:SMsgList-L, M:SMsg)) = 
        $concat(S:Synchro, R:SMsgList-L), M:SMsg .
    eq $concat(S:Synchro, nil) = nil, S:Synchro .
  
    sort SynchroTuple .
    op ((_,_)) : Msg Msg -> SynchroTuple .
    ---Parent msg is derived from the second element in each mapping pair,
    ---child msg from the first.
    op $synchroMsgs : Mappings -> SynchroTuple .
    op $synchroMsgs : Mappings SynchroTuple -> SynchroTuple .
    vars MC MP : Msg .
    eq $synchroMsgs((MC |-> MP, M:Mappings)) = 
       $synchroMsgs(M:Mappings, (MC, MP)) .
    vars MCS MPS : Msg .
    eq $synchroMsgs((MC |-> MP, M:Mappings), (MCS, MPS)) = 
       $synchroMsgs(M:Mappings, (MCS $; MC, MPS $; MP)) . 
    eq $synchroMsgs(MC |-> MP, (MCS, MPS)) = (MCS $; MC, MPS $; MP) . 

    op $synchroMsgs : Synchro Mappings -> Msg .
    eq $synchroMsgs({R1:Role -> R2:Role ;; H:How ;; PARENTMSG:Msg $; MR1:Msg}, 
       (MR2:Msg |-> MR1:Msg, M:Mappings))
    =   
       $synchroMsgs({R1:Role -> R2:Role ;; H:How ;; PARENTMSG}, M:Mappings) $;
       MR2:Msg .
    eq $synchroMsgs({R1:Role -> R2:Role ;; H:How ;; MR1:Msg}, 
       (MR2:Msg |-> MR1:Msg, M:Mappings)) 
    =  MR2:Msg [owise] .
    eq $synchroMsgs({R1:Role -> R2:Role ;; H:How ;; MR1:Msg}, 
       (MR2:Msg |-> MR1:Msg)) 
    =  MR2:Msg [owise] .
    
        

endm

mod COMP-TRANSLATION-TO-MAUDE-NPA is
    protecting COMPOSITION .
    protecting TRANSLATION-TO-MAUDE-NPA-SYNTAX .
    protecting TRANSLATION-TO-MAUDE-NPA-HELPER-FUNCTIONS-SEMANTICS .

    op $createModule : -> TranslationData .

    eq $compositionDone = [empty] $createModule .
    eq  [S:StrandSet] $translated(N:Nat, [S1:StrandSet] TD:TranslationData) = 
        [S:StrandSet & S1:StrandSet] .

    rl  $createModule
        [SD:StrandData] 
        [SS:StrandSet]
        [[N:Nat |-> S:System] A:AttackData]
    =>
    (fmod PROTOCOL-SPECIFICATION is
        protecting PROTOCOL-EXAMPLE-SYMBOLS .
        protecting DEFINITION-PROTOCOL-RULES .
        protecting DEFINITION-CONSTRAINTS-INPUT .
        eq STRANDS-DOLEVYAO = SS:StrandSet [nonexec] .
        eq STRANDS-PROTOCOL = convert(SD:StrandData) [nonexec] .
        convert([N:Nat |-> S:System] A:AttackData)
    endfm) .

    rl   
        [SD:StrandData] 
        [$emptyAttackData]
        [SS:StrandSet]
    =>
    (fmod PROTOCOL-SPECIFICATION is
        protecting PROTOCOL-EXAMPLE-SYMBOLS .
        protecting DEFINITION-PROTOCOL-RULES .
        protecting DEFINITION-CONSTRAINTS-INPUT .
        eq STRANDS-DOLEVYAO = SS:StrandSet [nonexec] .
        eq STRANDS-PROTOCOL = convert(SD:StrandData) [nonexec] .
    endfm) [print SD:StrandData] .

endm


---red $makeIdem((AName:Msg |-> BName:Msg, BName:Msg |-> AName:Msg)) .
---Note: To successfully rewrite the PSL term, we need the following:
---[<DEFS>] - definitions. <DEFS> = $noDefs if we have no 
              ---definitions
---[mt] - Starting Strand data for protocols.
--- [empty] - Starting Strand Set for the Intruder.
--- {S:StrandSet} - A silly thing that ensures that a variable
                  ---S appears in the attack patterns.
---{K:IntruderKnowledge} - Another silly thing needed by the
                         ---attack patterns
---[mt] - Another strand data if we're rewriting a composition term (and ONLY
---         if we're rewriting a composition term). This should be included
---         at the top level (i.e. same level as the [comp] structure and 
---         the translate terms).
---Note: Make sure to have python select the correct module 
---[TRANSLATION-TO-MAUDE-NPA or COMP-TRANSLATION-TO-MAUDE-NPA]